
Genome-Wide Analysis Reveals Novel Genes Influencing
Temporal Lobe Structure with Relevance to Neurodegeneration
in Alzheimer’s Disease

Jason L. Stein1, Xue Hua1, Jonathan H. Morra1, Suh Lee1, Derrek P. Hibar1, April J. Ho1,
Alex D. Leow1,2, Arthur W. Toga1, Jae Hoon Sul3, Hyun Min Kang4, Eleazar Eskin3,5,
Andrew J. Saykin6, Li Shen6, Tatiana Foroud7, Nathan Pankratz7, Matthew J.
Huentelman8, David W. Craig8, Jill D. Gerber8, April N. Allen8, Jason J. Corneveaux8,
Dietrich A. Stephan8, Jennifer Webster8, Bryan M. DeChairo9, Steven G. Potkin10, Clifford
R. Jack Jr.11, Michael W. Weiner12,13, Paul M. Thompson1, and Alzheimer’s Disease
Neuroimaging Initiative*
1 Laboratory of Neuro Imaging, Dept. of Neurology, UCLA School of Medicine, Los Angeles, CA
2 Resnick Neuropsychiatric Hospital at UCLA, Los Angeles, CA
3 Department of Computer Science, UCLA, Los Angeles, CA
4 Computer Science and Engineering, UC San Diego, La Jolla, CA
5 Department of Human Genetics, UCLA, Los Angeles, CA
6 Center for Neuroimaging, Department of Radiology, Indiana University School of Medicine,
Indianapolis, IN
7 Department of Medical and Molecular Genetics, Indiana University School of Medicine,
Indianapolis, IN
8 The Translational Genomics Research Institute, Phoenix, AZ
9 Neuroscience, Molecular Medicine, Pfizer Global R&D, New London, CT
10 Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA
11 Mayo Clinic, Rochester, MN
12 Depts. Radiology, Medicine and Psychiatry, UC San Francisco, San Francisco, CA
13 Department of Veterans Affairs Medical Center, San Francisco, CA

Abstract

Please address correspondence to: Paul Thompson PhD, Professor of Neurology, Laboratory of Neuro Imaging, Dept. of Neurology,
UCLA School of Medicine, Neuroscience Research Building 225E, 635 Charles Young Drive, Los Angeles, CA 90095-1769, USA,
Phone: (310) 206-2101 Fax: (310) 206-5518 thompson@loni.ucla.edu.
*Data used in the preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(www.loni.ucla.edu\ADNI). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or
provided data but did not participate in analysis or writing of this report. ADNI investigators include (complete listing available at
http://www.loni.ucla.edu/ADNI/Collaboration/ADNI_Manuscript_Citations.pdf).
Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered
which could affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Neuroimage. Author manuscript; available in PMC 2010 June 1.

Published in final edited form as:
Neuroimage. 2010 June ; 51(2): 542–554. doi:10.1016/j.neuroimage.2010.02.068.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.loni.ucla.edu/ADNI/Collaboration/ADNI_Manuscript_Citations.pdf


In a genome-wide association study of structural brain degeneration, we mapped the 3D profile of
temporal lobe volume differences in 742 brain MRI scans of Alzheimer’s disease patients, mildly
impaired, and healthy elderly subjects. After searching 546,314 genomic markers, 2 single
nucleotide polymorphisms (SNPs) were associated with bilateral temporal lobe volume (P <
5×10−7). One SNP, rs10845840, is located in the GRIN2B gene which encodes the N-Methyl-D-
Aspartate (NMDA) glutamate receptor NR2B subunit. This protein - involved in learning and
memory, and excitotoxic cell death - has age-dependent prevalence in the synapse and is already a
therapeutic target in Alzheimer’s disease. Risk alleles for lower temporal lobe volume at this SNP
were significantly over-represented in AD and MCI subjects versus controls (odds ratio = 1.273; P
= 0.039) and were associated with the mini-mental state exam (MMSE; t = −2.114; P = 0.035)
demonstrating a negative effect on global cognitive function. Voxelwise maps of genetic
association of this SNP with regional brain volumes, revealed intense temporal lobe effects (FDR
correction at q = 0.05; critical P = 0.0257). This study uses large-scale brain mapping for gene
discovery with implications for Alzheimer’s disease.

Introduction
The quest to identify genes that influence brain integrity or degeneration has been greatly
accelerated by large scale scanning and genotyping of subjects with Alzheimer’s disease
(AD) and those at risk with amnestic mild cognitive impairment (MCI). Here we developed
a high resolution mapping approach to associate 546,314 genomic markers with regional
volumetric differences in the brain MRI scans of 742 subjects. The resulting study is the
largest brain mapping to date that has used genome-wide scans, which we applied to create
point-by-point maps of genetic association. We found that lower temporal lobe volumes
were most associated with a common variant in the glutamate receptor gene, GRIN2B. In
addition, this risk allele was statistically over-represented in AD and MCI versus elderly
control subjects.

Structural brain degeneration is characteristic of AD and MCI (Du et al., 2001; Apostolova
et al., 2007; Thompson et al., 2007), a condition with 5-fold increased risk for subsequent
development of AD (Petersen et al., 1999; Petersen, 2000). In AD, the hippocampus and
entorhinal cortex of the temporal lobes are typically the first structures to degenerate (Braak
and Braak, 1991; Thompson et al., 2003). Temporal lobe volume differences are detectable
on structural brain MRI through delineation of the hippocampus (Morra et al., 2009) or by
tensor-based morphometry (Hua et al., 2008), which plots the 3D profile of volume loss or
gain relative to a template. Lower temporal lobe volume is a well known biological marker
and risk factor for AD and MCI (Hua et al., 2008), and reflects both cellular atrophy
(shrinkage) and overt neuronal loss (Brun and Englund, 1981). In young healthy adults, twin
studies attribute ~50% of the temporal lobe volume variation (Brun et al., 2008) and 40–
69% of hippocampal volume variation (Peper et al., 2007) to genetic influences.

Late-onset AD is genetically complex; most likely, many genes with small effects contribute
to the overall disease phenotype (Tanzi, 1999; Waring and Rosenberg, 2008). Several
genetic variants are known to increase the risk for late onset AD including those in the CLU
and PICALM genes (Harold et al., 2009; Lambert et al., 2009) and most notably the ε4 allele
of the APOE gene (Farrer et al., 1997); however, the ε4 allele is found in only around 38%
of those with AD (relative to 14% of healthy subjects), and these genetic variants do not
account for the full genetic risk for late-onset AD (Farrer et al., 1997; Bertram et al., 2007).
Risk alleles for AD have been verified by comparing allele frequencies of common
polymorphisms between AD patients and healthy controls (Bertram et al., 2007). Here,
instead of first comparing the incidence of genetic polymorphisms between diagnostic
categories, we ask a distinct but related question: which common genetic polymorphisms
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influence brain structure in pathological aging? Progressive temporal lobe and hippocampal
atrophy may mediate the link between genes and behavioral deficits, so any genes associated
with structural degeneration may be a more powerful way to identify mechanisms of disease
onset and cognitive decline. In addition, the gene products identified may become future
therapeutic targets.

Prior genome-wide analysis using quantitative traits relevant to disease or brain function has
been successful, and will likely help in better understanding the etiology of these processes.
Genetic variants in the KIBRA gene were identified using association to memory
performance (Papassotiropoulos et al., 2006) and other genetic variants worthy of further
study were implicated through studying activation during fMRI tasks of working memory
(Potkin et al., 2009a).

In a large-scale genetic analysis of 742 subjects, we set out to identify common genetic
polymorphisms that influence brain structure in the elderly. By enforcing a genome-wide
statistical threshold to avoid false positives, and incorporating prior knowledge of genetic
mechanisms in biochemical pathways relevant to aging and AD, we identified 2 regions on
the genome that are strongly associated with temporal lobe structure. The structure-
modifying genetic variants were further assessed by comparing allele frequencies between
AD patients and healthy controls, a common method to validate a candidate risk gene
(Bertram et al., 2007). The function of the most strongly associated gene, already known
from prior studies of glutamate receptors, is highly relevant to learning and memory, and
relates to current therapeutic strategies for AD (i.e., memantine drug treatment) (Parsons et
al., 2007).

Materials and Methods
Sample

Neuroimaging and genetic data were acquired from 818 subjects as part of the Alzheimer’s
Disease NeuroImaging Initiative (ADNI), a large five-year study launched in 2004 by the
National Institute on Aging (NIA), the National Institute of Biomedical Imaging and
Bioengineering (NIBIB), the Food and Drug Administration (FDA), private pharmaceutical
companies, and non-profit organizations, as a $60 million, public-private partnership. The
goal of the ADNI study is to determine biological markers of Alzheimer’s disease through
neuroimaging, genetics, neuropsychological tests and other measures in order to develop
new treatments and monitor their effectiveness, and lessen the time of clinical trials.
Subjects were recruited from 58 sites in the United States. The study was conducted
according to the Good Clinical Practice guidelines, the Declaration of Helsinki, and U.S. 21
CFR Part 50 – Protection of Human Subjects, and Part 56 – Institutional Review Boards.
Written informed consent was obtained from all participants before protocol-specific
procedures were performed. All data acquired as part of this study are publicly available
(http://www.loni.ucla.edu/ADNI/).

All subjects underwent thorough clinical and cognitive assessment at the time of scan
acquisition to determine diagnosis. The mini-mental state exam (MMSE) was administered
to provide a global measure of mental status (Cockrell and Folstein, 1988). The clinical
dementia rating (CDR) was used to assess dementia severity (Morris, 1993). Healthy
volunteer status was determined through MMSE scores between 24–30 (inclusive), a CDR
of 0, non-depressed, non-MCI, and non-demented. MCI diagnosis was determined by
MMSE scores between 24–30 (inclusive), a memory complaint, objective memory loss
measured by education adjusted scores on the Wechsler Memory Scale Logical Memory II,
a CDR of 0.5, absence of significant levels of impairment in other cognitive domains,
essentially preserved activities of daily living, and an absence of dementia. Diagnosis of AD
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was made according to NINCDS-ADRDA criteria for probable AD (McKhann et al., 1984),
MMSE scores between 20–26 (inclusive), and CDR of 0.5 or 1.0. Definitive autopsy-based
diagnosis of AD was not possible.

DNA isolation and SNP genotyping Methods
DNA was isolated from B lymphocytes cells taken from blood (Neitzel, 1986) and extracted
(Lahiri et al., 1992) using standard procedures. Genomic DNA samples were analyzed on
the Human 610-Quad BeadChip (Illumina, Inc. San Diego, CA) according to the
manufacturer’s protocols (Infinium HD Assay; Super Protocol Guide; Rev. A May 2008).
Before the initiation of the assay, 50ng of genomic DNA from each sample was examined
qualitatively on a 1% Tris-acetate-EDTA agarose gel for visual signs of degradation. Any
degraded DNA samples were excluded from further analysis. Samples were quantitated in
triplicate with PicoGreen® reagent (Invitrogen, Carlsbad, CA) and diluted to 50ng/μl in Tris-
EDTA buffer (10mM Tris, 1mM EDTA, pH 8.0). 200 ng of DNA was then denatured,
neutralized, and amplified for 22 hours at 37°C (this is termed the MSA1 plate). The MSA1
plate was then fragmented with FMS reagent (Illumina) at 37°C for one hour and then
precipitated with 2-propanol and incubated at 4°C for 30 minutes. The resulting blue
precipitate was then resuspended in RA1 reagent (Illumina) at 48°C for one hour. The
samples were then denatured (95°C for 20 minutes) and immediately hybridized onto
BeadChips at 48°C for 20 hours. BeadChips were then washed and subjected to single base
extension and staining. Finally, the BeadChips were coated with XC4 reagent (Illumina),
dessicated, and imaged on the BeadArray Reader (Illumina).

Genetic Analysis
Genome-wide genotype information was collected at 620,901 markers. Multiple types of
genetic variants were genotyped, but only Single Nucleotide Polymorphisms (SNPs) were
included in this analysis. Alleles on the forward strand are reported. Individual markers were
excluded from the analysis that did not satisfy the following quality criteria based on
previous genome-wide association studies (Wellcome Trust Case Control Consortium,
2007): genotype call rate < 95 % (42,680 SNPs removed), significant deviation from Hardy-
Weinberg equilibrium P < 5.7×10−7 (873 markers removed), minor allele frequency < 0.01
(60,867 SNPs removed), and a platform-specific recommended quality control score of <
0.15 (variable number of SNPs removed across subjects). 546,314 SNPs remained for
analysis after quality control. Association was conducted using the Plink software package
(Purcell et al., 2007) (version 1.05; http://pngu.mgh.harvard.edu/purcell/plink/) to conduct a
regression at each SNP with the number of minor alleles, age, and sex as the independent
variables and the quantitative phenotype (temporal lobe or hippocampal volume) as the
dependent variable, assuming an additive genetic model.

In addition to a standard regression analysis, a permutation test was conducted to give P-
values corrected for multiple comparisons across all the SNPs assessed for potential
association. First, the effects of age and sex were regressed on the phenotype. The residuals
of this regression formed age and sex adjusted phenotypes. Phenotypes (i.e. image data)
were randomly swapped between subjects without restriction, and the linear regression
analysis without covariates was performed again for each marker and the t-statistic of
association was saved. This process was repeated 10,000 times to obtain a non-parametric
null distribution for the best SNP. We note that this is quite a conservative approach, as the
SNP’s P-value is not merely compared to its own association P-value in null data (which
would be appropriate if it were the only SNP examined). Instead, it is compared with the
best (most strongly associated) SNP’s P-value at each randomization. To assign a corrected
P-value to a SNP, the t-value for association when the data were correctly assigned is
compared to the maximum of all the permuted statistics at each iteration.

Stein et al. Page 4

Neuroimage. Author manuscript; available in PMC 2010 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://pngu.mgh.harvard.edu/purcell/plink/


Genes and ESTs in close proximity to significant SNPs were localized through the UCSC
genome browser (Kent et al., 2002) (http://genome.ucsc.edu/) and are shown in Table 1.
Results were visualized and linkage disequilibrium (LD) patterns with putative causative
mutations in the general population were explored using Haploview (Barrett et al., 2005)
(version 4.1; http://www.broad.mit.edu/mpg/haploview/) using allele frequency information
from a European population (CEU) derived from the HapMap project (Frazer et al., 2007)
(Release 22; http://www.hapmap.org/). Additionally, gene functions and known associations
with disease were reviewed using the Online Mendelian Inheritance in Man database
(OMIM; http://www.ncbi.nlm.nih.gov/sites/entrez?db=omim) and gene ontology
information from the Entrez Gene (http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene)
database.

Within-Group Permutation to Control for Effects of Diagnostic Status
To ensure that diagnosis did not confound the analyses, empirical P-values were generated
using the “–within” flag in Plink. This permutation algorithm randomly swaps phenotypes
between individuals, but only within specified subgroups – in this case diagnosis group (AD,
MCI, controls). Any effect of group is then built into the null (reference) distribution formed
by permutation tests. The linear regression analysis without covariates was performed again
for each marker and the t-statistic for each marker was saved. This process was adaptively
repeated to ensure stable P-values (up to 100 million replicates). SNPs that proved unlikely
to become significant after a small number of permutations were no longer swapped for
computational efficiency as high precision for non-associated (high) P-values is not
desirable here. The number of times a test statistic met or exceeded the observed test statistic
was divided by the total number of permutations performed for that SNP. The effect of
diagnosis is therefore preserved in each permuted dataset. In this way, we were able to
control for diagnosis in the analyses without the loss of power and multiple testing issues
related to analyzing each group separately.

Association Controlling for Population Structure
To control for population substructure, an additional analysis was performed which controls
for genetic relatedness. First, a kinship matrix was estimated from the identity-by-state
relationship of each subject to each other. A linear mixed effects model was then used to
estimate the significance of each SNP to the phenotype of interest controlling for any
population structure and also controlling for age and sex according to the formula

(1)

where y is a vector representing the phenotype; X is a matrix of fixed effects containing the
additive genetic effect of a SNP, age, sex, and a constant term; β is a vector representing the
fixed effect regression coefficients; Z is an identity matrix; u is the random effect with
Var(u) = σ2

gK, where K is the kinship matrix; and e is a matrix of residual effects with
Var(e)= σ2

eI. This analysis was implemented using Efficient Mixed-Model Association
(EMMA; http://mouse.cs.ucla.edu/emma/) (Kang et al., 2008).

MRI Analysis Methods
Three-dimensional T1-weighted baseline brain MRI scans were analyzed using tensor-based
morphometry (TBM) and an automated hippocampal recognition algorithm as detailed in
previous studies (Hua et al., 2008; Morra et al., 2008). Briefly, high-resolution structural
brain MRI scans were acquired at 58 ADNI sites with 1.5 T MRI scanners using a sagittal
3D MP-RAGE sequence developed for consistency across sites (Jack et al., 2008) (TR =
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2400 ms, TE = 1000 ms, flip angle = 8°, field of view = 24 cm, final reconstructed voxel
resolution = 0.9375 × 0.9375 × 1.2 mm3). Images were calibrated with phantom-based
geometric corrections to ensure consistency across scanners. Additional image corrections
included (Jack et al., 2008): (1) correction of geometric distortions due to gradient non-
linearity, (2) adjustment for image intensity inhomogeneity due to B1 field non-uniformity
using calibration scans, (3) reducing residual intensity homogeneity, and (4) geometric
scaling according to a phantom scan acquired for each subject to adjust for scanner- and
session-specific calibration errors. Images were linearly registered with 9 parameters to the
International Consortium for Brain Imaging template (ICBM-53) (Mazziotta et al., 2001) to
adjust for differences in brain position and scaling.

For TBM analysis, the protocol was identical to that of a prior study analyzing the clinical
correlates of temporal lobe volume differences (Hua et al., 2008) in a smaller population;
since then, genome-wide genotype data was collected. First, a minimal deformation template
(MDT) was created for the healthy elderly group to serve as an unbiased average template
image to which all other images were warped using a non-linear inverse-consistent elastic
intensity-based registration algorithm (Leow et al., 2005; Hua et al., 2008). Volumetric
tissue differences were assessed in all individuals by averaging the determinant of the
Jacobian matrix of deformation in a bilateral temporal lobe region of interest, manually
delineated on the MDT (Figure 2a). The average of the determinant of the Jacobian matrix
multiplied by the volume of the temporal lobe delineated on the template gives the volume
of the temporal lobe in each subject. This volumetric difference relative to a population-
based brain template served as the temporal lobe volume measure.

For the hippocampal volume analysis, the protocol is identical to that of a prior study
assessing hippocampal volume (Morra et al., 2008). Two independent raters reliably
delineated the hippocampus in 21 subjects (7 AD, 7 MCI, and 7 healthy elderly). The auto
context model, a machine learning algorithm based on AdaBoost (Freund and Schapire,
1997), was used to create a model based on the most predictive features from the images in
one of the rater’s training sets (Morra et al., 2008). The model was then applied to all other
scans in the sample, generating a 3D outline of the hippocampus in the full set of images
(Figure 2b). The average bilateral hippocampal volume served as the hippocampal volume
phenotype. To reduce effects of any segmentation errors on the hippocampal volume
estimates, we eliminated some subjects with volumes in the extreme lowest and highest
percentiles of the full sample (40 lying more than 2 standard deviations below the mean and
1 subjects lying more than 2 standard deviations above the mean).

As expected, the two phenotypes of temporal lobe volume and hippocampal volume were
moderately correlated (r2 = 0.079, P = 1.02×10−13). The quantitative phenotypes are
partially dependent, as both hippocampal and temporal lobe volume reduction occur with
normal aging and Alzheimer’s disease, but the variance in one explained by the other is low.

Results
Population stratification

Population stratification is a known problem in genetic association analyses which can
produce false-positive or false-negative results (McCarthy et al., 2008). When multiple
subpopulations are present in the data (population stratification), spurious associations (or
lack of associations) can result from allele frequency differences between populations rather
than associations with the phenotype (Lander and Schork, 1994). Self-declared Caucasian
(non-Hispanic) subjects represented the vast majority of the genetic data in the Alzheimer’s
Disease Neuroimaging Initiative sample (91%), so only these subjects (N = 745) were
included to reduce population stratification effects. It is possible that self-declared ethnicity
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does not match with true ethnicity, and that substructure exists even within the Caucasian
group. To examine this, multi-dimensional scaling (MDS) was used to project the identity-
by-state (IBS) relationship of each subject in relation to other subjects to a 2-dimensional
space. Substructures in the data, showing genetically more or less related groups, can then
be easily visualized (Figure 1). The MDS results showed that all self-identified Caucasians
fell within the same genotypic cluster, confirming the self-report and providing evidence for
using only Caucasian subjects to reduce the effects of population stratification (Figure 1,
Left). Additionally, the MDS plot identified 2 pairs of subjects as siblings within the
Caucasian group (Figure 1, Middle) and otherwise showed some substructure within the data
(Figure 1, Right).

Temporal Lobe Volume in Diagnostic Groups
Two partially independent phenotypes were analyzed: temporal lobe volume and
hippocampal volume, each with a slightly different population sample. Temporal lobe
volume was assessed in 173 AD patients (78 female/95 male; mean age ± standard deviation
= 75.54 ± 7.66), 361 MCI subjects (130 female/231 male; 75.16 ± 7.29), and 208 healthy
elderly subjects (95 female/113 male; 76.07 ± 4.95). Age was not significantly different
between groups (F2,739 = 1.172; P = 0.3103), but gender was (χ2(2) = 6.787, P = 0.0334).
Hippocampal volume was assessed in 162 AD patients (73 female/89 male; 75.17 ± 7.57),
343 MCI subjects (128 female/215 male; 74.94 ± 7.26), and 193 healthy elderly (91 female/
102 male; 76.11 ± 4.97). Age was not significantly different between groups (F2,695 = 1.892;
P = 0.1516), but there was a trend in gender differences between the groups (χ2(2) = 5.810,
P = 0.0547).

The profile of temporal lobe volume differences were assessed with Tensor Based
Morphometry (TBM; Figure 2a) which plots, in 3D, the pattern of differences in regional
brain volumes, for each brain, relative to a minimal deformation template (MDT) of healthy
elderly subjects from this study (Hua et al., 2008). The volume difference for all voxels in a
bilateral temporal lobe region of interest was averaged and used as a quantitative phenotype
for genomic association, as a summary measure of temporal lobe volume. Hippocampal
volume was assessed with an automated recognition program (Figure 2b) that was trained on
21 manual delineations of the hippocampus by a reliable rater (Morra et al., 2008). The
average bilateral hippocampal volume was also used as a quantitative phenotype for
genomic association.

As expected, an initial comparison of temporal lobe volume between diagnostic groups
showed significant differences between both AD vs. healthy elderly (mean temporal lobe
volume in mm3 ± s.d. 255,483 ± 13,927 vs. 264,405 ± 11,827; t379 = −6.76; P = 5.19 ×
10−11) and MCI vs. healthy elderly (259,501 ± 13,886 vs. 264,405 ± 11,827; t567 = − 4.27;
P = 2.22 × 10−5). A comparison of hippocampal volume between diagnostic groups also
showed significant differences, as expected, between both AD vs. healthy elderly (mean
hippocampal volume in mm3 ± s.d. 2,713.2 ± 555.4 vs. 3,417.6 ± 531.0; t353 = −12.19; P =
2.2 × 10−16) and MCI vs. healthy elderly (3,001.6 ± 574.2 vs. 3,417.6 ± 531.0; t534 = −8.27;
P = 1.1 × 10−15).

Genome-Wide Association
Genome-wide association analysis at 546,314 SNPs using temporal lobe and hippocampal
volume as quantitative phenotypes, after controlling for age and sex, revealed two SNPs that
survived the genome-wide evidence threshold (Wellcome Trust Case Control Consortium,
2007; Sabatti et al., 2009) of P < 5×10−7 (Figure 3a). Information on SNPs surviving a more
liberal threshold of P < 1×10−5 and their closest genes (within ± 50 kb) is presented in Table
1.
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To assess the corrected significance level of these findings, we constructed a quantile-
quantile plot of sorted P-values based on a log10 scale (McCarthy et al., 2008) (Figure 3b).
No inflation of observed versus expected P-values (black line) was found, as shown through
these plots and by calculation of variance inflation factors (Bacanu et al., 2000), λ, which do
not differ greatly from 1 (temporal lobe volume λ =1.021, hippocampal volume λ =1.013).
This demonstrates that the data generally follow the null hypothesis of no association and
only deviate in the far tails of the distribution. Population stratification is therefore again
unlikely to account for the results.

Both SNPs that survived the genome-wide evidence threshold were found using the
temporal lobe volume phenotype. One SNP, rs10845840 (P = 1.260×10−7), is located on
chromosome 12 within an intron of the GRIN2B gene, which encodes for the regulatory
subunit 2B (NR2B) of the NMDA glutamate receptor. An additional SNP, rs11055612,
strongly associated with the temporal lobe volume phenotype (P = 2.809×10−6) is also
located in an intron of the GRIN2B gene and in high LD with rs10845840 (r2 = 0.872). The
other SNP which survived the genome-wide evidence threshold, rs2456930 (P =
3.142×10−7), lies in an intergenic region of chromosome 15. Upon randomly removing two
subjects, one from each of the sibling pairs identified above, the results were changed very
little and still survived the genome-wide evidence threshold (P = 1.715 ×10−7 for
rs10845840; P = 2.191×10−7 for rs2456930; N = 740). Additionally, because some
population substructure was identified (Figure 1, Right) an analysis was conducted using a
mixed model approach that controls for genetic relatedness (Kang et al., 2008). The two
SNPs identified here remained significant in this analysis (P = 1.463×10−7 for rs10845840;
P = 3.762 ×10−7 for rs2456930; N = 742) clearly showing that population substructure is not
accounting for the results. These findings also survive the genome-wide evidence threshold
after controlling for diagnostic group by permuting phenotype values within each of the
three diagnostic categories (P = 4.033×10−7 for rs10845840 and P = 1.500×10−7 for
rs2456930; N = 742). After correction for multiple comparisons using permutation testing,
both SNPs have trend-level association (corrected P = 0.05419 for rs10845840 and corrected
P = 0.1369 for rs2456930; N = 742).

Other genes of interest (Table 1) were identified with both the temporal lobe volume and
hippocampal volume phenotype at a more liberal threshold of P < 1×10−5. These genes
include RNF220, UTP20, and KIAA0743. RNF220 and UTP20 are largely unstudied, but
they fall into functional groups of metal binding (RNF220) and suppression of cell
proliferation (Schwirzke et al., 1998) (UTP20). KIAA0743 is also known as NRXN3
(neurexin 3) and is involved with axon guidance and cell adhesion (Ushkaryov et al., 1992).
Additionally, SNP rs1448284 is located on chromosome 4 within an expressed sequence tag
(EST; GenBank Accession DA204899) showing expression in the brain (Kimura et al.,
2006); however, it is not in linkage disequilibrium (LD) with any RefSeq (a curated
Reference Sequence database) gene. Additional interesting SNPs were identified in
intergenic regions which were not close to genes or ESTs.

To determine how the different genotypes of the most associated SNPs affected brain
volumes, boxplots were created for each of these SNPs (Figure 4). As expected, an additive
genetic effect is clearly evident with the lowest phenotype value resembling a risk genotype
(T allele for rs10845840 and G allele for rs2456930).

Presence of Risk Alleles in Diagnostic Groups and Association to Cognitive Testing
After detecting their effect on brain structure, we tested if the allele frequencies for the two
most associated SNPs identified in this study were over-represented in impaired versus
healthy subjects (AD and MCI vs. healthy elderly) in all 745 Caucasian (non-Hispanic)
subjects with genomic data. Intriguingly, the adverse genotype of the SNP within
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rs10845840 (in the glutamate receptor GRIN2B gene) was significantly over-represented in
MCI and AD (χ2 = 4.242; OR = 1.273; P = 0.039). The allele frequency of the other SNP,
rs2456930, was not significantly different between diagnostic groups (χ2 = 0.760; OR =
0.902; P = 0.383). Additionally, MMSE scores were associated with the adverse genotype of
the GRIN2B SNP rs10845840 (t = −2.114; P = 0.035) showing that risk alleles are
associated with a negative effect on global cognitive function. However, MMSE scores were
not associated with rs2456930 (t = −0.3373; P = 0.736).

Linkage Disequilibrium Patterns with Putative Causative Genetic Variants
The polymorphisms identified here could serve as proxies for association tests to causative
SNPs not directly genotyped in this experiment. The HapMap database gives the linkage
disequilibrium, or correlation between the presence of two alleles in a population, for many
more SNPs across the genome than were genotyped in this experiment. We identified three
functional SNPs within the GRIN2B gene (including adjacent regulatory regions) that were
also genotyped in a European population in the HapMap database. Functional SNPs were
defined as SNPs in untranslated regions with potential to affect transcription (3′ or 5′ UTR),
SNPs in exons that change the amino acid or prematurely end translation of the protein
(coding non-synonymous), and SNPs in splice sites. The SNP in the GRIN2B gene identified
here (rs10845840) had low correlation to three SNPs in the 5′ UTR of the GRIN2B gene:
rs1805502 (r2 = 0.0060), rs1805476 (r2 = 0.096), rs890 (r2 = 0.1). Other functional SNPs
exist within the GRIN2B gene but are not available from the HapMap database version used
here (Release 22).

Estimation of Sample Size Needed for Replication
To estimate how many subjects would be needed to replicate the finding, conditional on the
dataset used, that these genetic variants are associated with temporal lobe structure, we took
a resampling approach. Three subjects, one from each diagnostic category (AD, MCI, and
healthy control), were randomly picked and removed from the analysis and the P-value for
each of the most associated SNPs was calculated. The process was repeated until no more
subjects remained in the diagnostic category with the least number of subjects (173 AD
subjects). To estimate confidence intervals for this estimate, the resampling was repeated
1000 times. 95% confidence intervals were based on the 2.5th and 97.5th percentiles of the
resampled distribution (Figure 5). Fewer than 323 and <223 subjects would be required to
replicate the effect of rs10845840 and rs2456930, respectively, with 95% confidence in a
new sample at a significance level of P < 0.025 (a nominal P < 0.05, Bonferroni corrected
for two independent tests). We note that the standard P < 0.05 level rather than the genome-
wide threshold would be applicable to a replication sample, as a prior hypothesis regarding
the specific gene exists.

Voxel-Based Genetic Mapping Localizes the Effect of SNP rs10845840 within the Temporal
Lobes

The phenotype used initially for the genome-wide search was the overall bilateral volume of
the temporal lobes. This phenotype proved useful for finding genomic markers highly
associated with the temporal lobe; however, it does not provide the spatial localization of the
SNP’s effect on the temporal lobe volume. To further investigate this, the difference in
temporal lobe volume relative to a standard template was assessed at every voxel in the
temporal lobe through TBM, a widely-used method for mapping the 3D profile of brain
volumetric differences in human populations (Hua et al., 2008). Temporal lobe volume
differences at each voxel were regressed on the number of minor alleles at SNP rs10845840,
after adjusting for simultaneous effects of age, and sex, at all voxels, across all subjects. The
P-value of the genetic association to rs10845840 for each voxel was then plotted, and is
shown in Figure 6. To correct for multiple comparisons across voxels, a False Discovery
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Rate (Benjamini and Hochberg, 1995; Genovese et al., 2002) correction of q = 0.05 was
used to establish a critical P-value threshold of 0.0257. With this approach, on average, only
5% of the suprathreshold voxels in a map of this kind will be false positives; in other words,
it is expected that the voxel-by-voxel genetic associations are true associations at 95% of the
suprathreshold voxels shown. The SNP has wide ranging effects across the temporal lobe,
but the strongest effects are on the bilateral temporal poles and in the medial temporal lobes,
bilaterally.

It is also of interest to know if the genetic association between the GRIN2B glutamate
receptor gene variant and brain volumes can be found within each diagnostic group:
controls, MCI, and AD patients. We computed 3 separate maps of the genetic association
between the GRIN2B glutamate receptor gene variant and brain volumes in healthy elderly
controls, MCI, and AD patients, separately. For all 3 groups, a cumulative distribution
function plot of the observed P-values in each of the diagnostic groups is shown in Figure 7.
This figure shows the cumulative distribution of P-values in the temporal lobe (see Figure 6)
for all AD, MCI, and healthy elderly subjects separately. In these plots, the curves that rise
more sharply than the reference curve (y=20x) are considered to show significant effects
after the conventional correction for multiple spatial comparisons, because they find
associations at a rate that is at least 20 times the rate that would be expected by chance if all
genomic data were null and showed no association. As shown, only the MCI group passes
the FDR threshold of q = 0.05 with a critical P-value threshold of 0.0053. The MCI group
also has the greatest number of subjects.

Interactions with Apolipoprotein E (APOE) ε4 allele
The ε4 allele of the APOE gene is a well-validated genetic risk factor for AD (Farrer et al.,
1997), and we and others have previously found that this allele is associated with temporal
lobe atrophy (Hua et al., 2008) and with the rate of hippocampal atrophy (Morra et al.,
2009). Excluding all APOE ε2 allele carriers, we tested the additive genetic effect of
carrying an APOE ε4 allele (controlling for age and sex) on temporal lobe structure using a
voxelwise approach. As expected, this was significant after correcting for multiple
comparisons through FDR (critical P = 0.000431; q = 0.05; N = 619). We then tested
whether there was a significant interaction between (1) the additive effect of the risk allele at
SNP rs10845840 in the GRIN2B gene, and (2) the additive effect of the APOE ε4 allele, in
terms of their statistical effect on temporal lobe volume differences. A multiple regression
model predicting temporal lobe volume differences based on the rs10845840 genotype,
APOE ε4 genotype, and the interaction of the two (controlling for age and sex) did not
survive multiple comparisons correction using FDR at q = 0.05, suggesting that epistatic
interactions between APOE ε4 and GRIN2B do not account for our findings.

Discussion
We have identified here two common polymorphisms that are associated with temporal lobe
volume with genome-wide support in a large cohort of elderly subjects, assessed with brain
imaging and genome-wide scanning. We also identified several potential candidate genes
associated with both temporal lobe and hippocampal volume. We identified one SNP within
an intergenic region on chromosome 15 which is strongly associated with temporal lobe
volume. The most strongly associated polymorphism was within the GRIN2B gene, which
encodes the NR2B subunit of the NMDA receptor, and is a promising functional candidate
considering the prior evidence of its involvement in learning and memory, structural
plasticity of the brain, and in characteristic features of AD and neurodegeneration, including
as a therapeutic target receptor. NMDA receptors have long been implicated in long-term
potentiation, a key process in learning and memory, and over-expression of the GRIN2B
glutamate receptor gene enhances learning and memory in mice (Tang et al., 1999).
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Synaptic plasticity mediated through NMDA receptors also causes structural remodeling of
neurons, which reinforces these connections (Lamprecht and LeDoux, 2004).
Pharmaceutical blockade of NMDA receptor channels can limit cell death induced by
excitotoxicity (Kemp and McKernan, 2002; Parsons et al., 2007). In addition, the relative
prevalence and location of the NR2B subunit within the synapse is age-dependent. In early
postnatal development, there is greater prevalence of the NR2B subunit, and its distribution
shifts toward extrasynaptic locations with aging (Yashiro and Philpot, 2008).

In addition, we performed fine-scale voxel-by-voxel mapping of associations between this
genetic polymorphism and brain structure. The genes identified here were found based on
gross summaries of anatomy, and stringent genome-wide evidence. However, we
subsequently used a voxel-based mapping method to assess, at each point in the brain, the
statistical association between rs10845840 and variations in brain structure. This clarified
the anatomical specificity and localization of the gene effects, revealing strong effects in the
bilateral temporal poles and bilateral medial temporal lobes. In situ hybridization in post-
mortem human brain has revealed high expression of GRIN2B mRNA within pyramidal
cells of the temporal cortex and hippocampus (Schito et al., 1997; Allen Institute for Brain
Science, 2009), consistent with this SNP having effects in these regions.

These findings may add another piece to the multifactorial genetic puzzle of late onset AD.
Late-onset AD is hypothesized to be influenced by many genes, each with a relatively small
effect (Tanzi, 1999; Waring and Rosenberg, 2008). Difficulties in finding these genes may
arise from the heterogeneous nature of the disease, which can lead to groups of subjects with
the same diagnosis but with different genetic architectures. Here, we use a different
approach by studying a phenotype that is biologically based and is strongly associated with
the disease. We note that the risk allele identified in the GRIN2B gene is over-represented in
patients with AD and MCI. It passes the genome-wide support threshold for association with
temporal lobe volume deficits, which are a known risk factor for AD. The polymorphisms
identified here also have relatively small effect: rs2456930 decreases temporal lobe volume,
on average, by 1.473% per risk allele, and rs10845840 decreases temporal lobe volume by
1.457% per risk allele. Each of these genetic variations may contribute somewhat to the as
yet unmodeled sources of heritability of Alzheimer’s disease beyond the currently accepted
risk alleles, such as APOE ε4 (Maher, 2008; McCarthy et al., 2008). A combined approach
of studying genetic risk for AD through diagnosis, neuroimaging and structural
endophenotypes may result in progress in discovering genetic contributors to late-onset AD.

The image pre-processing conducted here used a 9 parameter linear registration step that
matches the position and scales the size of each brain to the MDT. In general, we use 9
parameter registration in our cross-sectional studies of Alzheimer’s disease because head
size and brain size vary so widely across subjects; the temporal lobe tends to be more
vulnerable to atrophy than the rest of the brain, so there is still substantial residual atrophy in
AD versus controls even after adjusting for brain size. Because of this, temporal lobe
atrophy is typically easier to detect after controlling for overall brain volume, because the
effects of wide variations in head size have been largely removed. In addition, work by
Paling et al. (Paling et al., 2004) has advocated the use of 9 parameter linear registration,
especially in multi-site imaging studies, as it can correct for scanner voxel size variations in
large studies involving multiple sites, scanners, and acquisition sequences, such as this one
(these are typically mild and may result in variations of 1–3% in brain volume, but they add
to measurement error).

Even so, as we have noted in our prior studies (Brun et al., 2009), there is however some
evidence for non-proportional scaling of brain subregions relative to the overall size of the
brain (Toro et al., 2008). In all stereotaxic studies (e.g., those producing voxel-wise maps),

Stein et al. Page 11

Neuroimage. Author manuscript; available in PMC 2010 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



this may confound the interpretation of apparently localized brain differences between
groups. Put another way, the fraction of the brain that a specific brain substructure is
expected to occupy may be larger (or smaller) in a smaller brain. Such an effect can be
modeled by including brain volume as a regressor in the scaled Jacobian maps, perhaps after
logarithmic transformation of both variables. For a full analysis of this effect, please see
(Jancke et al., 1997; Thompson et al., 2002; Brun et al., 2009). This power law effect is
relevant to all morphometric studies as regional brain volume is always somewhat affected
by the overall size of the brain, and it cannot be ruled out that SNPs influencing subregional
volumes do so because they influence the overall size of the brain, if the relative volumes of
the brain substructures follow a (nonlinear) power law.

Hippocampal volumes proved to be a less informative phenotype than temporal lobe
volume. Hippocampal volumes, though widely studied in a genetic context (Seshadri et al.,
2007), are only moderately heritable (Peper et al., 2007) most likely due to the large
environmental influence as the hippocampus is a highly plastic structure – responsive to
individual experiences. Additionally, though we have used new and reliable delineation
methods for automatically delineating the hippocampus in the MRI scans (Morra et al.,
2009), it remains one of the most difficult structures to accurately model due to the
resolution of the MRI scans and the small intensity differences between the structure and
surrounding tissue.

One previous genome-wide association study of brain structure (Seshadri et al., 2007) found
SNPs with associations with temporal brain volume and hippocampal volume, but its power
was limited as it examined related individuals, had few hippocampal volumes, and low
genomic coverage. Those temporal lobe SNPs identified in the Seshadri study were either
not identified or not replicated here. rs5028798 was not directly genotyped in our sample
and no good proxy in HapMap was identified; rs2143881 was neither directly genotyped in
our sample nor in HapMap; rs2793772 was not directly genotyped in our sample but was
genotyped in HapMap with a good proxy rs1104973 (r2 = 1) but was not replicated (P =
0.6964); rs10497352 was directly genotyped in our sample but was not replicated (P =
0.6476); rs1433527 was directly genotyped in our sample but was not replicated (P =
0.9804). Those hippocampal SNPs identified in the Seshadri study were not identified here.
rs9293140 and rs1963442 were neither directly genotyped in our sample or in HapMap.

The sample sizes examined here are extremely large for an imaging study (this is one of the
largest brain imaging studies to date), but are smaller than other genome-wide association
studies that have not used brain scanning (Wellcome Trust Case Control Consortium, 2007).
Several factors empower the design. Scans of 742 healthy elderly control, MCI, and AD
subjects allowed accurate structural measurements across a broad phenotypic range. The
genome-wide analyses were not split within diagnostic groups as the goal was to present as
broad a phenotypic continuum (Petersen, 2000) as possible. Though it is possible that
diagnostic groups represent distinct genetic backgrounds and may therefore confound the
interpretation of our results, here we operate under the hypothesis that associations are
evident regardless of diagnostic group, but may be more pronounced in disease (Gottesman
and Gould, 2003; Cannon and Keller, 2006). In interpreting findings in this mixed cohort, it
cannot be ruled out that the SNP effects are influencing the normal aging process
independently of AD pathology. In fact, the SNP effects may even be present in young
adults, prior to substantial brain aging. Conversely, it cannot be ruled out that such
associations are driven by the presence of different diagnostic categories, and might not be
found if only normal subjects were examined. In the future, when the sample sizes are
greatly increased as more imaging and genetic data are collected, it should be possible to
further stratify the image database to understand (1) which specific sub-populations show a
detectable SNP effect, and (2) which processes (AD, aging, early development, or all of
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them) are influenced by the SNPs of interest. At present we have a more restricted goal of
finding SNPs that influence brain structure in a mixed cohort of healthy and ill subjects,
including those with AD and those who are healthy. Treating this cohort as a continuum is
arguably more defensible than (for example) studying a mixed cohort of subjects with a
Mendelian genetic illness (such as Fragile X) and controls. This is because for Alzheimer’s
disease, a continuum is arguably evident in that some of cellular processes characteristic of
AD (e.g., increased cerebral amyloid load) are typically present to some degree in those not
yet diagnosed (Braskie et al., 2008; Frisoni et al., in press). For example, healthy elderly
subjects often show some hallmarks of AD pathology at a subclinical level (amyloid plaques
and tau neurofibrillary tangles) that can be detected on imaging and negatively correlate
with cognitive status (Braskie et al., 2008; Small et al., 2009). As such, the effect of
pathology on the SNP associations cannot be disentangled easily by focusing only on
controls, as many harbor pathology at a subclinical level. Additionally, the boundary
between MCI and AD is based on cognitive tests and observations of daily living that are
easy to assess clinically, not biologically based boundaries (Petersen, 2000). The continuum
from healthy aging to mild impairment to disease gives the broadest phenotypic range and
therefore the highest power to detect the genetic determinants of brain volume in old age,
including variants that may have relevance to AD. Therefore splitting between diagnostic
groups is likely to reduce power through both fewer subjects and a smaller phenotypic range
(Cannon and Keller, 2006). Even so, using a permutation algorithm we found that the
findings exist regardless of diagnostic group. Additionally, the use of continuous traits
(instead of discrete diagnostic categories) may also better reflect the underlying biology than
clinical diagnosis alone (Potkin et al., 2009b).

In this study we used a genome-wide evidence threshold of P < 5×10−7 as in other genome-
wide association studies (Wellcome Trust Case Control Consortium, 2007; Sabatti et al.,
2009) querying multiple phenotypes. We refer in this paper to genome-wide evidence or
support rather than genome-wide significance because there is not yet a universal consensus
on how to define an appropriate significance threshold. We used permutation testing in
which the imaging data is permuted across subjects and all SNPs are tested to estimate the
probability that so high a P-value for association could have occurred by chance. This is
determined by keeping the same set of SNPs in each subject, but randomizing the
assignment of images to subjects. After conducting associations with all the SNPs, the
lowest P-value is retained. This procedure can be used to determine a significance threshold
that incorporates the fact that SNPs within the same subject are not independent (due to
linkage disequilibrium). The two SNPs reported here have a permutation-corrected
significance level of P = 0.05419 for rs10845840 and P = 0.1369 for rs2456930. The first of
these results can be considered to mean that the GRIN2B variant associates with the
phenotype so strongly that only 1 in 20 times would any SNP at all be so strongly associated
in completely null data. This is therefore evidence supporting that the association did not
occur by chance.

More recent work has proposed an additional argument, suggesting that a genome-wide
significance threshold should account for not just the markers directly measured as part of
the experiment, but rather the variation of the entire genome (Dudbridge and Gusnanto,
2008). Such an approach is more conservative; it is based on the premise that the subset of
SNPs chosen for genotyping (which depends on the chip and the density of genotyping)
could have been a “lucky” choice that came up with a high significance hit, and as such one
should control for all genomic variants, even if they were not in fact genotyped in the
current experiment. Such a line of argument suggests a genome-wide significance threshold
of P < 7.2×10−8.
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Regardless of the genome-wide significance criterion, the gold standard for determining if
hits are true positives is replication. Additional replication of this study’s findings is
necessary. Work is actively ongoing through the Enhancing NeuroImaging Genetics through
Meta-Analysis (ENIGMA) Network (Thompson and Martin, 2010) to find collaborations to
replicate the findings presented here. Using a re-sampling approach, we estimate that fewer
than 323 and <223 subjects will be needed to replicate the effect of rs10845840 and
rs2456930, respectively, in a new sample at a reduced prior hypothesis significance level
with 95% confidence. In addition to statistical validation, functional validation is also
necessary to understand the mechanism by which these polymorphisms contribute to
temporal lobe volume differences (McCarthy et al., 2008). First, it is necessary to determine
what the causative polymorphism is within the gene. rs2456930 resides in an intergenic
region on the genome, so further characterization of the functional significance of this
region is needed. rs10845840 lies in an intron of the GRIN2B gene and is not in LD with
more finely mapped potential causative mutations from a European sample identified in the
current release of HapMap. However, more mutations within the gene do exist and detailed
mapping of these variants could lead to identification of a causal mutation. Following this,
the mechanism of action can be learned through knock-in animal models containing the
causative mutation. Additionally, these intronic and intergenic gene variants could
themselves alter biological pathways through changes in expression levels.

In summary, we identified potential quantitative trait loci associated with temporal lobe
volume differences at a genome-wide evidence threshold in the elderly. These candidate
genes can now serve as a target of study in future large replication samples. The
polymorphisms identified here may also represent risk factors for diseases with
characteristic temporal lobe atrophy such as AD and its common precursor, MCI; the
NMDA/glutamate pathway is also a target for anti-dementia drugs such as memantine.
These associations support the theory that endophenotypes (Gottesman and Gould, 2003)
will help to discover genes that influence brain structure. Ultimately studies combining
imaging and genomic methods may help to provide a more mechanistic understanding of
neurological and psychiatric illness.
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Abbreviations

TBM Tensor Based Morphometry

MDT minimal deformation template

AD Alzheimer’s disease

MCI mild cognitive impairment

ADNI Alzheimer’s Disease Neuroimaging Initiative

SNP single nucleotide polymorphisms

NMDA receptor N-Methyl-D-Aspartate glutamate receptor

LD Linkage Disequilibrium

OR odds ratio

FDR False Discovery Rate
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Figure 1.
Multi-dimensional scaling shown in three groups of subjects. Each dot represents a subject,
and the distance between dots represents overall genetic similarity. Dots close together
represent genetically more similar subjects. Left: MDS for all subjects genotyped as part of
the ADNI dataset. Self-declared Caucasians (blue) group together very closely, whereas
non-Caucasians (black) do not. Middle: MDS for Caucasian subjects only. Four outliers are
seen which represent two sibling pairs. Right: MDS for Caucasian subjects only randomly
excluding one person from each of the two sibling pairs. Some substructure is evident.
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Figure 2.
Temporal Lobe and Hippocampal Volume Measures. (a) An unthresholded color-coded map
shows the average percent volume reduction of AD patients (N = 173) relative to a standard
mean brain image based on identically scanned healthy subjects, in a temporal lobe region of
interest overlaid on the population based template. Here the temporal lobe is ~10% smaller
in red regions than the average volume in matched controls. The average bilateral temporal
lobe volume was used as a quantitative phenotype for the genomic association analysis,
prior to fine-scale voxel-based genetic association mapping. (b) Automatic delineation of
the hippocampus in a representative healthy elderly subject (the hippocampal boundary is
shown in green). The average of the left and right hemisphere hippocampal volumes was
used as a quantitative phenotype for the genomic association analysis.
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Figure 3.
Association of 546,314 SNPs to temporal lobe and hippocampal volume in N = 742 and N =
698 subjects, respectively. (a) The x-axis moves along each base pair of each chromosome
(identified in color in the key) and the y-axis gives the −log10 of the P-value for association.
The red line corresponds to the genome-wide evidence value of P = 5×10−7; all points above
this line represent SNPs that are strongly associated with the phenotype. The two SNPs
which survive the genome-wide evidence threshold are rs10845840 on chromosome 12 and
rs2456930 on chromosome 15. The blue line corresponds to a more liberal threshold
identifying genes of interest (P = 1×10−5). (b) A quantile-quantile plot shows the
distribution of P-values in this sample versus the P-values expected under the null
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hypothesis of no association (blue dots). The black line and grey shading shows 95%
confidence intervals of the expected distribution.
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Figure 4.
Box plots of temporal lobe volume grouped by genotype at most associated SNPs. Box plots
show the median value (horizontal line), first and third quartiles (box), 1.5 multiplied by the
interquartile range (whiskers), and outliers beyond that range (open dots) for each genotype
group. Each box plot is in the order homozygous minor allele (TT or AA), heterozygous (TC
or AG), homozygous major allele (CC or GG) at each SNP. The frequencies of each
genotype are 12.96%, 49.53%, 37.52% for rs2456930, and 18.73%, 50.67%, 30.59% for
rs10845840. Red numbers show the difference between the mean phenotype value of the
higher-volume genotype group versus the mean phenotype value of each other genotype
group.
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Figure 5.
The minimal number of subjects needed to detect the effect of the most significant SNPs
was estimated with a resampling approach. Subjects were randomly removed from each of
the diagnostic categories until none was left in a category, and the association P-value of the
SNP was calculated. This process was repeated 1000 times, to estimate 95% confidence
intervals (red lines). The median P-value of the repetitions for each number of subjects
removed is shown as the solid black line. The dashed black line represents the genome-wide
evidence level (P = 5×10−7). The dashed blue line represents the replication significance
threshold (P = 0.025). The dotted blue line shows the estimated minimum sample size that
would be required to detect a replication of the finding with 95% confidence (N = 323 and
<223 for rs10845840 and rs2456930, respectively). The dotted black line shows the median
sample size needed for genome-wide support (N = 670 and 706 for rs10845840 and
rs2456930, respectively).
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Figure 6.
A voxelwise representation of significant influences of the SNP rs10845840, a genetic
polymorphism of the glutamate receptor GRIN2B gene, on volumetric differences in the
temporal lobe. Indicated in color are brain regions where volumes are statistically associated
with variants in the glutamate receptor gene, in 742 subjects, overlaid on a population
specific template. Using a convention that is standard in brain mapping, the map was
thresholded at an FDR q-value of 0.05 across voxels of the temporal lobe, and the overall
map is significant after correction for multiple spatial comparisons, and controls the
expected number of suprathreshold false positive voxels (i.e., voxels where the association is
spurious) at 5% of the total. Z-Coordinates in MNI space are shown for each axial slice
going from inferior to superior every 4 mm. The frontal lobes are at the top of each panel
and the occipital lobes are at the bottom. The images are in radiological convention (left of
the image is the right side of the subject). Significance is shown as −log10(P-value), with
warmer colors representing more significant influence of the SNP on regional temporal lobe
volume.
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Figure 7.
The cumulative distribution function of P-values in the voxelwise genetic association map
of SNP rs10845840 (genetic variation in the glutamate receptor) within diagnostic groups
and localization of significance in the MCI group. Left: The diagnostic groups here are
distinguished according to the color of the line. The black line represents the threshold that
curves must cross, to control the false discovery rate at 5%. The maps of genetic association
are considered to be significant in the MCI sample because the curve passes above the y=20x
black line. This means that false positives in the maps of genetic association are likely to be
occurring at less than 5% of the suprathreshold voxels shown. Middle and Right: The
voxelwise association overlaid on a subject specific template in both axial (middle; MNI Z-
coordinate shown) and coronal (right; MNI X-coordinate shown) views thresholded to only
show significant voxels.

Stein et al. Page 27

Neuroimage. Author manuscript; available in PMC 2010 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Stein et al. Page 28

Ta
bl

e 
1

A
ll 

SN
Ps

 su
rv

iv
in

g 
th

e 
P 

< 
1×

10
−

5  t
hr

es
ho

ld
 fo

r g
en

om
e-

w
id

e 
as

so
ci

at
io

n 
w

ith
 te

m
po

ra
l l

ob
e 

at
ro

ph
y 

an
d 

hi
pp

oc
am

pa
l v

ol
um

es
.

T
em

po
ra

l L
ob

e 
A

tr
op

hy

C
hr

om
os

om
e

G
en

e 
w

ith
in

 ±
 5

0 
kb

SN
P

P-
V

al
ue

M
A

F
M

in
or

 A
lle

le
M

aj
or

 A
lle

le
Po

si
tio

n
β

3p
22

.1
rs

98
32

46
1

3.
72

3×
10

−
6  (

1.
44

1×
10

−
5 )

0.
23

69
G

A
39

72
45

97
37

65
.6

3p
22

.1
rs

15
27

56
6

2.
32

3×
10

−
6  (

3.
26

1×
10

−
6 )

0.
25

30
C

T
39

74
74

55
37

57
.8

3p
22

.1
rs

98
78

55
6

2.
89

9×
10

−
6  (

7.
98

8×
10

−
6 )

0.
23

65
T

G
39

77
17

30
37

94
.3

4p
15

.1
rs

14
48

28
4

1.
96

3×
10

−
6  (

1.
31

8×
10

−
6 )

0.
03

02
C

T
32

75
60

50
99

39
.9

12
p1

3.
1

G
RI

N
2B

rs
11

05
56

12
2.

80
9×

10
−

6  (
1.

59
0×

10
−

5 )
0.

49
80

T
C

13
81

45
95

−
33
71
.6

12
p1

3.
1

G
RI

N
2B

rs
10

84
58

40
1.

26
0×

10
−

7  (
4.

03
3×

10
−

7 )
0.

44
16

T
C

13
82

21
24

−
38
02
.2

14
q2

4.
3

K
IA

A
07

43
rs

71
55

43
4

7.
81

8 
×1

0−
6  (

7.
94

5×
10

−
6 )

0.
27

49
C

A
77

84
50

59
36

43
.0

15
q2

2.
2

rs
24

56
93

0
3.

14
2x

10
−

7  (
1.

50
0x

10
−

7 )
0.

37
90

A
G

60
47

46
31

38
43

.9

H
ip

po
ca

m
pa

l V
ol

um
e

C
hr

om
os

om
e

G
en

e 
w

ith
in

 ±
 5

0 
kb

SN
P

P-
V

al
ue

M
A

F
M

in
or

 A
lle

le
M

aj
or

 A
lle

le
Po

si
tio

n
β

1p
22

.2
ZN

F3
26

rs
28

13
74

6
1.

71
9×

10
−

6  (
1.

05
4×

10
−

5 )
0.

45
50

A
C

90
31

23
52

14
8.

1

10
p1

2.
33

rs
16

91
79

19
7.

66
6×

10
−

6  (
8.

68
4×

10
−

5 )
0.

37
37

G
A

19
20

00
35

14
7.

6

12
q2

3.
2

U
TP

20
rs

22
90

72
0

2.
83

9×
10

−
6  (

1.
46

3×
10

−
5 )

0.
43

03
A

G
10

02
11

17
4

−
14
8.
1

16
q2

1
rs

80
56

65
0

1.
47

1×
10

−
6  (

3.
16

7 
×1

0−
5 )

0.
06

98
A

G
58

44
81

99
−
30
2.
5

Th
e 

tw
o 

SN
Ps

 th
at

 su
rv

iv
e 

ge
no

m
e-

w
id

e 
ev

id
en

ce
 th

re
sh

ol
d 

ar
e 

un
de

rli
ne

d.
 G

en
es

 a
re

 b
ol

de
d 

w
he

n 
a 

SN
P 

fa
lls

 d
ire

ct
ly

 w
ith

in
 th

em
. M

A
F 

is
 th

e 
m

in
or

 a
lle

le
 fr

eq
ue

nc
y.

 β
 v

al
ue

s g
iv

e 
th

e 
ad

di
tiv

e 
ge

ne
tic

ef
fe

ct
 fr

om
 th

e 
m

aj
or

 a
lle

le
, a

fte
r c

on
tro

lli
ng

 fo
r a

ge
 a

nd
 se

x.
 P

-v
al

ue
s i

n 
pa

re
nt

he
se

s g
iv

e 
th

e 
as

so
ci

at
io

n 
of

 S
N

Ps
 w

he
n 

co
nt

ro
lli

ng
 fo

r d
ia

gn
os

tic
 g

ro
up

 u
si

ng
 a

 p
er

m
ut

at
io

ns
 w

ith
in

 g
ro

up
. G

RI
N

2B
:

gl
ut

am
at

e 
re

ce
pt

or
, i

on
ot

ro
pi

c,
 N

-m
et

hy
l D

-a
sp

ar
ta

te
 2

B
; K

IA
A0

74
3:

 n
eu

re
xi

n 
3;

 Z
N

F3
26

: z
in

c 
fin

ge
r p

ro
te

in
 3

26
; U

TP
20

: U
TP

20
, s

m
al

l s
ub

un
it 

(S
SU

) p
ro

ce
ss

om
e 

co
m

po
ne

nt
, h

om
ol

og
 (y

ea
st

).

Neuroimage. Author manuscript; available in PMC 2010 June 1.


