
BRAIN
A JOURNAL OF NEUROLOGY

A data-driven model of biomarker changes in
sporadic Alzheimer’s disease
Alexandra L. Young,1 Neil P. Oxtoby,1 Pankaj Daga,1 David M. Cash,1,2 on behalf of the
Alzheimer’s Disease Neuroimaging Initiative,† Nick C. Fox,2 Sebastien Ourselin,1,2

Jonathan M. Schott2,* and Daniel C. Alexander1,*

1 Centre for Medical Image Computing, Department of Computer Science, University College London, Gower Street, London, WC1E 6BT, UK

2 Dementia Research Centre, UCL Institute of Neurology, University College London, 8-11 Queen Square, London, WC1N 3AR, UK

†A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_

List.pdf

*These authors contributed equally to this work.

Correspondence to: Alexandra Young,

Centre for Medical Image Computing,

Department of Computer Science,

University College London,

Gower Street, London,

WC1E 6BT, UK

E-mail: alexandra.young.11@ucl.ac.uk

We demonstrate the use of a probabilistic generative model to explore the biomarker changes occurring as Alzheimer’s disease

develops and progresses. We enhanced the recently introduced event-based model for use with a multi-modal sporadic disease

data set. This allows us to determine the sequence in which Alzheimer’s disease biomarkers become abnormal without reliance

on a priori clinical diagnostic information or explicit biomarker cut points. The model also characterizes the uncertainty in the

ordering and provides a natural patient staging system. Two hundred and eighty-five subjects (92 cognitively normal, 129 mild

cognitive impairment, 64 Alzheimer’s disease) were selected from the Alzheimer’s Disease Neuroimaging Initiative with meas-

urements of 14 Alzheimer’s disease-related biomarkers including cerebrospinal fluid proteins, regional magnetic resonance

imaging brain volume and rates of atrophy measures, and cognitive test scores. We used the event-based model to determine

the sequence of biomarker abnormality and its uncertainty in various population subgroups. We used patient stages assigned by

the event-based model to discriminate cognitively normal subjects from those with Alzheimer’s disease, and predict conversion

from mild cognitive impairment to Alzheimer’s disease and cognitively normal to mild cognitive impairment. The model predicts

that cerebrospinal fluid levels become abnormal first, followed by rates of atrophy, then cognitive test scores, and finally

regional brain volumes. In amyloid-positive (cerebrospinal fluid amyloid-b1–425192 pg/ml) or APOE-positive (one or more

APOE4 alleles) subjects, the model predicts with high confidence that the cerebrospinal fluid biomarkers become abnormal

in a distinct sequence: amyloid-b1–42, phosphorylated tau, total tau. However, in the broader population total tau and phos-

phorylated tau are found to be earlier cerebrospinal fluid markers than amyloid-b1–42, albeit with more uncertainty. The model’s

staging system strongly separates cognitively normal and Alzheimer’s disease subjects (maximum classification accuracy of

99%), and predicts conversion from mild cognitive impairment to Alzheimer’s disease (maximum balanced accuracy of 77%

over 3 years), and from cognitively normal to mild cognitive impairment (maximum balanced accuracy of 76% over 5 years). By

fitting Cox proportional hazards models, we find that baseline model stage is a significant risk factor for conversion from both
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mild cognitive impairment to Alzheimer’s disease (P = 2.06 � 10�7) and cognitively normal to mild cognitive impairment

(P = 0.033). The data-driven model we describe supports hypothetical models of biomarker ordering in amyloid-positive and

APOE-positive subjects, but suggests that biomarker ordering in the wider population may diverge from this sequence. The

model provides useful disease staging information across the full spectrum of disease progression, from cognitively normal to

mild cognitive impairment to Alzheimer’s disease. This approach has broad application across neurodegenerative disease,

providing insights into disease biology, as well as staging and prognostication.

Keywords: event-based model; disease progression; Alzheimer’s disease; biomarkers; biomarker ordering

Abbreviations: ADAS-Cog = Alzheimer’s Disease Assessment Scale-Cognitive Subscale; ADNI = Alzheimer’s Disease Neuroimaging
Initiative; CN-converters = cognitively normal subjects who convert to mild cognitive impairment at follow-up; CN-stable = cogni-
tively normal subjects with a stable cognitively normal diagnosis at follow-up; EBM = event-based model; FDG = fluorodeoxyglucose;
MCI-converters = mild cognitive impairment subjects who convert to Alzheimer’s disease at follow-up; MCI-stable = mild cognitive
impairment subjects with a stable mild cognitive impairment diagnosis at follow-up

Introduction
Existing biomarkers of Alzheimer’s disease provide complimentary

information for disease staging and differential diagnosis.

Determining the particular sequence and evolution of biomarker

abnormality potentially provides a mechanism to stage and stratify

patients throughout the full disease time course, and in particular,

during the presymptomatic phase. This helps reduce heterogeneity

in trial groups, match individuals to putative treatments, and

monitor treatment outcomes. Although new diagnostic criteria

now incorporate biomarkers to allow earlier diagnosis (Sperling

et al., 2011), the evidence base for this is relatively limited. A

major challenge of current Alzheimer’s disease research (Jack

et al., 2013a) is to construct models of disease progression that

estimate biomarker ordering and dynamics directly from real-world

data sets enabling quantitative evaluation of patient state.

Alzheimer’s disease is characterized pathologically by the build-

up of amyloid plaques and neurofibrillary tangles in brain tissue

(Braak and Braak, 1991). These pathologies are thought to pre-

cede downstream neurodegeneration (i.e. neuronal loss), which

leads to clinical symptoms. Biomarkers have been developed that

allow the pathological process of Alzheimer’s disease to be moni-

tored in vivo. The most well validated of these are CSF amyloid-

b1–42 (Blennow and Hampel, 2003) and amyloid PET imaging

(Klunk et al., 2004; Clark et al., 2011), which measure brain amyl-

oid pathology; CSF phosphorylated tau and total tau (Blennow

and Hampel, 2003), as measures of neurofibrillary tangle depos-

ition and neuroaxonal damage; fluorodeoxyglucose (FDG) PET

(Herholz, 2012), a measure of brain metabolism; volume and at-

rophy rate markers derived from structural MRI (Fox and Schott,

2004), which are used to measure the extent and rate of regional

neurodegeneration; and cognitive test scores such as the Mini-

Mental State Examination (McKhann et al., 1984), which measure

cognitive performance.

Hypothetical models of Alzheimer’s disease progression have

been proposed (Aisen et al., 2010; Frisoni et al., 2010; Jack

et al., 2010) that describe a distinct sequence in which different

biomarkers become abnormal. These models generally propose

that CSF amyloid-b1–42 and amyloid PET abnormalities precede

CSF total tau, FDG-PET hypometabolism and atrophy rate

measured from structural MRI, which all occur before a clinically

significant change in cognitive test scores. However, these models

are not informed directly by measured data sets. Jack et al. (2011)

have attempted to validate the ordering of a subset of these bio-

markers: CSF amyloid-b1–42, CSF total tau and hippocampal

volume; however, their results are dependent on choosing cut

points defining abnormal biomarker levels, which are not easy to

establish (Bartlett et al., 2012).

Various other attempts to determine biomarker ordering (Lo

et al., 2011; Förster et al., 2012; Landau et al., 2012) have

used a priori staging based on clinical diagnosis. This limits the

temporal resolution of these models, typically to three stages (pre-

symptomatic, mild cognitive impairment, and Alzheimer’s disease),

and so can provide only a crude ordering of a small number of

biomarkers. Other models (Bateman et al., 2012; Buchhave et al.,

2012) regress against a particular clinical measure to order bio-

markers with better temporal resolution. Bateman et al. (2012) use

time to disease onset (estimated from subject’s parents for pre-

symptomatic cases) in familial Alzheimer’s disease as the clinical

measure. The applicability of these results to sporadic Alzheimer’s

disease where the disease may play out differently remains to be

determined and depends on accurate estimates of age of symptom

onset. A similar approach in sporadic Alzheimer’s disease is to

stage subjects retrospectively by time to an Alzheimer’s disease

diagnosis. This requires a large elderly cohort to be followed

over a long time period to ensure that a significant proportion

of the cohort develops Alzheimer’s disease. Buchhave et al.

(2012) show such an analysis of CSF measures in subjects with

mild cognitive impairment. Villemagne et al. (2013) instead esti-

mate the rate of change of each biomarker in individuals and

integrate over all subjects to get an average biomarker trajectory

over time. However, as with the validation provided by Jack et al.

(2011), cut points are required to determine the ordering of the

biomarker trajectories.

The recently introduced event-based model (EBM) (Fonteijn

et al., 2012) provides a generative model of disease progression

that can learn the ordering of biomarker changes from large cross-

sectional (or short-term longitudinal to enable measurement of

rates of atrophy) data sets, as well as providing insights into the

uncertainty of the reconstructed ordering. The EBM defines the
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disease progression as a sequence of events at which individual

biomarkers become abnormal. The EBM is probabilistic in the

sense that it learns normal and abnormal distributions of bio-

marker values from the data, and so does not require a priori

staging or cut points. The EBM further enables the assignment

of each subject to a disease stage. Previous work (Fonteijn

et al., 2012) demonstrated the EBM’s ability to order biomarkers

and generate staging measures derived from imaging data, in gen-

etically defined disease and control populations (familial

Alzheimer’s disease and Huntington’s disease). However, the ori-

ginal EBM is not directly applicable to sporadic disease data sets,

which have significant proportions of misdiagnosed cases in the

patient group; and, particularly in Alzheimer’s disease research, a

poorly defined control group because a significant number (esti-

mated to be a third by the eighth decade) of apparently healthy

elderly individuals have biomarker evidence consistent with pre-

symptomatic Alzheimer’s disease (Rowe et al., 2010; Schott et al.,

2010).

Here we reformulate the EBM for multi-modal data from a

heterogeneous sporadic disease population. The new EBM accom-

modates a modest proportion of misdiagnosed patients as well as

allowing for presymptomatic cases contaminating the control

group. We apply this EBM to the Alzheimer’s Disease

Neuroimaging Initiative (ADNI) data set to obtain characteristic

biomarker orderings from various subgroups, as well as their un-

certainty. We demonstrate the fine-grained staging potential of

the EBM and its ability both to classify cognitively normal and

Alzheimer’s disease subjects and to predict conversion from mild

cognitive impairment to Alzheimer’s disease and cognitively

normal to mild cognitive impairment.

Materials and methods

Data description

Subjects

Data used in the preparation of this article were obtained from the

ADNI database (adni.loni.usc.edu). The ADNI was launched in 2003

by the National Institute on Aging (NIA), the National Institute of

Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug

Administration (FDA), private pharmaceutical companies and non-

profit organizations, as a $60 million, 5-year public-private partnership.

For up-to-date information, see http://www.adni-info.org. Written

consent was obtained from all participants, and the study was

approved by the Institutional Review Board at each participating

institution.

We downloaded data from LONI (www.loni.ucla.edu/ADNI/) on 5

February 2013, and included all 285 subjects (cognitively normal, mild

cognitive impairment or Alzheimer’s disease) that had a CSF examin-

ation at baseline, standardized cognitive assessment at baseline (for

details see www.adni-info.org/Scientists/Pdfs/adniproceduresman-

ual12.pdf), which included: the Mini-Mental State Examination

(McKhann et al., 1984), the Alzheimer’s Disease Assessment Scale-

Cognitive Subscale (ADAS-Cog) (Rosen et al., 1984) (modified 13-

item ADAS-Cog, which omits Item 13), and the Rey Auditory Verbal

Learning Test (Rey, 1958) (immediate recall score, i.e. the sum of trials

1 to 5), and useable 1.5 T MRI imaging at baseline and 1 year. Clinical

diagnosis (cognitively normal/mild cognitive impairment/Alzheimer’s

disease) was also recorded. Other possible biomarkers, e.g. FDG-PET

and amyloid PET, were not included in the present analysis because

they limit the number of available subjects: less than half of subjects

with CSF and MRI data at baseline underwent a FDG-PET scan at

baseline, and few had baseline amyloid PET imaging. CSF measures

of amyloid-b1–42, phosphorylated tau and total tau were performed

centrally, as previously described (Shaw et al., 2009). The CSF total

tau and phosphorylated tau data were log transformed to improve

normality. We downloaded APOE genotype, for which methods

have been published previously (Saykin et al., 2010), for each individ-

ual from the LONI website. For validation of the staging system

derived from the EBM, we downloaded the aforementioned set of

imaging, clinical and CSF data at 12- and 24-month follow-up time

points. For the CSF we downloaded longitudinal data over 4 years, so

as to obtain baseline, 12- and 24-month CSF data, which were pro-

cessed in the same batch. As an outcome measure, we downloaded

clinical diagnoses at all available time points up to 72 months.

Magnetic resonance imaging

Details of the MRI methodology have previously been described (Jack

et al., 2008). Cross-sectional regional measures of brain volume for

the hippocampus, entorhinal cortex, middle temporal gyrus, fusiform,

ventricles and whole brain, as well as total intracranial volume, were

calculated at baseline using FreeSurfer Version 4.3, which is docu-

mented and freely available for download online (http://surfer.nmr.

mgh.harvard.edu/). All regional volumes were normalized by dividing

by total intracranial volume for each subject.

Longitudinal measures of regional volume change between 0 and 12

months were obtained using the boundary shift integral (BSI): volume

change was measured for the whole brain using the KN-BSI method

(Leung et al., 2010b), and for the hippocampus using the MAPS-HBSI

method (Leung et al., 2010a).

Event set

The biomarkers available for all the subjects provide the following set

of 14 biomarker transition ‘events’, each of which corresponds to a

biomarker becoming abnormal, i.e. changing from the ‘control’ to

‘Alzheimer’s disease’ state: (i) three CSF events: amyloid-b1–42, phos-

phorylated tau and total tau; (ii) three cognitive events: ADAS-Cog,

Rey Auditory Verbal Learning Test and Mini-Mental State

Examination; (iii) six regional brain volume events: brain, ventricles,

hippocampus, entorhinal, mid temporal and fusiform volumes; and

(iv) two rates of atrophy events: rates of hippocampal and brain

atrophy.

Event sequences
We defined four population subgroups: (i) whole population, all sub-

jects; (ii) amyloid-positive (amyloid + ), subjects with CSF amyloid-b1–

425 192 pg/ml. This cut point was chosen according to the results of

Shaw et al. (2009) who determined cut points using a maximum ac-

curacy classification of autopsy confirmed patients with Alzheimer’s

disease and cognitively normal subjects; (iii) APOE-positive

(APOE + ), subjects with one or more APOE4 alleles; and (iv) amyl-

oid-positive APOE-positive (amyloid + APOE + ), subjects who are both

amyloid + and APOE + .

The event-based model

We estimated the most likely ordering of events and its uncertainty in

each subgroup using the EBM (Fonteijn et al., 2012). The EBM treats

each biomarker as either ‘normal’, i.e. non-pathological, or ‘abnormal’,
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i.e. as seen in Alzheimer’s disease. The switch from normal to abnor-

mal is termed an ‘event’. The occurrence of any particular event, Ei,

i ¼ 1 . . . l, is informed by the corresponding measurements xij of bio-

marker i in subject j, j ¼ 1 . . . J. The whole data set X ¼ fxijji ¼

1 . . . I, j ¼ 1 . . . Jg contains measurements of each biomarker in each

subject. The most likely ordering of the events is the sequence S

that maximizes the data likelihood

P XjSð Þ ¼
YJ

j¼1

XI

k¼0

PðkÞ
Yk

i¼1

P xijjEi

� � YI

i¼kþ1

Pðxijj:EiÞ

 !" #
, ð1Þ

where PðxjEiÞ and Pðxj:EiÞ are the likelihoods of measurement x given

that biomarker i has or has not become abnormal, respectively, and

PðkÞ is the prior likelihood of being at stage k, i.e. events E1, . . . , Ek

have occurred, and events Ekþ1, . . . , EI have yet to occur, which we

assume is uniform. This uniform prior assumes no knowledge of any

patient’s disease stage a priori, which imposes the least information

possible on estimated orderings.

In addition to finding the most likely sequence, we can evaluate

PðXjSÞ for any sequence to establish the relative likelihood of all se-

quences. This provides insight into the uncertainty of the ordering. The

positional variance diagram (Fonteijn et al., 2012) (Fig. 1A–D) visual-

izes both the maximum likelihood sequence and its uncertainty by

plotting the likelihood that each event appears in each position in

the sequence, i.e. the entry of each position is
P

S2Sik
PðXjSÞ where

Sik is the set of all sequences with event i at position k.

Model of the event distribution

Evaluation of Equation 1 requires models for each of the event distri-

butions, PðxjEiÞ and Pðxj:EiÞ. The original EBM in Fonteijn et al. (2012)

used a familial Alzheimer’s disease data set for which the control group

was well defined allowing direct estimation of Pðxj:EiÞ. In sporadic

Alzheimer’s disease, however, a significant proportion of the cogni-

tively normal control group may have presymptomatic Alzheimer’s dis-

ease. To counter this, we fitted a mixture of two normal distributions

to each biomarker separately using data from all subjects to obtain the

two models. To ensure a robust fit, particularly for biomarkers where

the distributions of the healthy and diseased population overlap sig-

nificantly, we constrain the standard deviations so that the standard

deviation of P xj:Eið Þ and PðxjEiÞ is less than or equal to that of the

cognitively normal and Alzheimer’s disease group, respectively. This is

a weak constraint designed simply to guide the mixture model away

from physically unrealistic solutions. Importantly, while this modelling

approach can be used to determine fixed cut points for each bio-

marker, the model here is not dependent on these cut points, using

a probability function to determine the most likely sequencing of event

switches.

For specific details of the model fitting procedure for the EBM see

the online Supplementary material.

Cross-validation of event sequence

We performed cross-validation of the maximum likelihood event se-

quence returned by the EBM (Fig. 1E–H) by re-estimating the event

distributions and maximum likelihood sequence (Supplementary ma-

terial: Section 1A–B) for 100 bootstrap samples of the data. The pos-

itional variance diagrams for the cross validation results show the

proportion of bootstrap samples in which event i appears at position

k of the maximum likelihood sequence.

Patient staging
Once the characteristic sequence S has been determined using the

EBM, the simplest way to assign a stage for a particular subject,

which we adopt here, is to find the stage which is assigned the highest

probability by the model, i.e. the stage,

argmaxkP Xjj S, k
� �

¼ argmaxkPðkÞ
Yk

i¼1

PðxijjEiÞ
YI

i¼kþ1

Pðxijj:EiÞ, ð2Þ

that maximizes the probability of the data given the maximum like-

lihood event sequence. As before, we make no a priori assumptions

about model stage by assuming the prior, PðkÞ, is uniform. The stage

ranges from 0 to I (the number of events). Thus the idealized model

for stage k is that all events up to and including k have occurred and

the events after k have not occurred. However, the assignment of

stage k to a particular patient does not mean they fit the model

exactly; it is simply the stage most compatible with their

measurements.

Longitudinal validation

To assess the consistency of patient staging measures longitudinally

(Fig. 3) we evaluated each patient’s stage at all follow-up time

points that met our inclusion criteria: subjects had to have measure-

ments for all biomarkers, including an MRI scan 12 months later to

calculate the boundary shift integral over a consistent time frame.

There were two follow-up time points that met these criteria: 12

months (Fig. 3A) and 24 months (Fig. 3B). We compared

each subject’s EBM stage at follow-up with their baseline EBM

stage, which was re-evaluated using the reprocessed CSF measures

so as to ensure that the CSF was processed consistently for all time

points.

Prediction of conversion

Patient staging derived from the EBM can be used to predict conver-

sion from mild cognitive impairment to Alzheimer’s disease or cogni-

tively normal to mild cognitive impairment (Table 2) by categorizing

subjects according to their EBM stage at baseline. We performed a

binary classification of mild cognitive impairment subjects into those

who have a stable diagnosis of mild cognitive impairment (MCI-stable)

and those who convert to Alzheimer’s disease (MCI-converters), and

cognitively normal subjects into those who have a stable diagnosis of

cognitively normal (CN-stable) and those who convert to mild cogni-

tive impairment (CN-converters), by thresholding on patient EBM

stage. Stable subjects were defined as those with a mild cognitive

impairment or cognitively normal diagnosis who remained with the

same diagnosis at the end of a 12-, 24-, 36-, 48- or 60-month

follow-up period. Converters were defined as those with a mild cog-

nitive impairment or cognitively normal diagnosis who were diagnosed

with Alzheimer’s disease or mild cognitive impairment, respectively, at

the end of a 12-, 24-, 36-, 48- or 60-month follow-up period. We

used the EBM stage that maximizes balanced accuracy to classify sub-

jects. Balanced accuracy is the average of the sensitivity and specificity,

which is similar to accuracy but does not depend on disease preva-

lence. To test the effect of increasing EBM stage on the probability of

conversion from mild cognitive impairment to Alzheimer’s disease and

cognitively normal to mild cognitive impairment (Table 3 and Fig. 4),

we used Cox proportional hazards models where the event was con-

version to Alzheimer’s disease or mild cognitive impairment, respect-

ively and the input variables were patient EBM stage and demographic

factors: age, sex, education and APOE4 carrier status (presence of an

APOE4 allele). Time to event data for subjects who did not convert

was considered censored at their last available diagnosis. Statistical

significance was set at P5 0.05.
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Figure 1 Positional variance diagrams showing the distribution of event sequences in population subgroups. (A–D) Positional variance

diagrams of the uncertainty in the maximum likelihood event ordering estimated by taking MCMC (Markov chain Monte Carlo) samples

using the EBM. (E–H) Positional variance diagrams from cross-validation of the maximum likelihood event sequence by bootstrap

resampling of the data. These diagrams overestimate the uncertainty, giving a more conservative picture than the left hand column. Each

entry in the positional variance diagram represents the proportion of MCMC samples, in A–D, or bootstrap samples, in E–H, in which

events appear at a particular position in the sequence (x-axis). This proportion ranges from 0 in white to 1 in black. The y-axis orders
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Staging using cross-sectional data alone
To demonstrate the EBM’s ability to stage patients using purely cross-

sectional measures we repeated the patient staging by fitting the

EBM for a subset of 12 events (Supplementary Tables 1–3 and

Supplementary Figs 1–4), excluding atrophy rates. The inclusion cri-

teria were the same as used previously except follow-up MRI scans at

12 months were not required. As before, patient staging results were

evaluated for the whole population using the maximum likelihood

event sequence determined over all subjects, but with atrophy rates

removed (Supplementary Fig. 1A).

Results

Subjects
Study subject demographics are summarized in Table 1. Of the

285 subjects that met our inclusion criteria, 189 were amyloid + ,

139 were APOE + , and 123 were amyloid + APOE + .

Event sequences
Figure 1A–D shows positional variance diagrams for each popula-

tion subgroup. Each positional variance diagram shows the max-

imum likelihood event sequence and its uncertainty. Figure 1E–H

shows positional variance diagrams obtained from cross-validation

of the maximum likelihood ordering.

The event sequences in all four populations (Fig. 1A–D) showed

broad agreement with hypothetical models such as Jack et al.

(2010): CSF biomarkers were shown to be early events, followed

by atrophy rates, then cognitive test scores and hippocampal and

entorhinal volume, and finally other regional brain volumes. Cross-

validation (Fig. 1E–H) confirmed high confidence in the ordering

of these sets of events: for all populations, the ordering strongly

placed CSF and atrophy rates before cognitive test scores and

hippocampal and entorhinal volume, and the remaining regional

volume changes last.

Whole population

The maximum likelihood ordering for the whole population

(Fig. 1A) showed some departures from current thinking in neur-

ology (Jack et al., 2010), although the uncertainty was high

(Fig. 1E). First, CSF total tau occurred prior to phosphorylated

tau. It might be expected that phosphorylated tau is an earlier

marker of Alzheimer’s disease than total tau (Jack et al., 2013a),

being a more specific measure of the build-up of neurofibrillary

tangles than total tau (Blennow and Hampel, 2003), which meas-

ures associated neuronal damage. Second, both total tau and

phosphorylated tau occurred before amyloid-b1–42, whereas amyl-

oid plaque deposition is widely considered to be the initiating

Figure 1 Continued
events by the maximum likelihood sequence. Where rows have a single black block on the diagonal, such as the top five events in

the diagram for the whole population, the ordering is strong and permutations of those events are unlikely. Grey blocks, such as the

Mini-Mental State Examination (MMSE) score, entorhinal volume and hippocampal volume in the whole population, show that permuting

the order of the events has little effect on the likelihood so their ordering is weak. Ab+ = amyloid + ; Abeta = amyloid-b;

P-tau = phosphorylated tau; T-tau = total tau; RAVLT = Rey Auditory Verbal Learning Test.

Table 1 Baseline demographics for the whole population and population subgroups

Demographics Cognitively normal Mild cognitive impairment Alzheimer’s disease

All subjects n 92 129 64
Sex M/F 48/44 (52%) 82/47 (64%) 34/30 (53%)

Age (years, mean � SD) 75 � 5 73 � 7 75 � 8

Education (years, mean � SD) 15.6 � 2.9 15.9 � 3 15 � 3

APOE + /� 22/70 (24%) 72/57 (56%) 45/19 (70%)

Amyloid + n 34 96 59
Sex M/F 19/15 (56%) 58/38 (60%) 31/28 (53%)

Age (years, mean � SD) 76 � 5 73 � 7 74 � 8

Education (years, mean � SD) 15.8 � 3.3 15.7 � 3.1 15 � 3.1

APOE + /� 15/19 (44%) 63/33 (66%) 45/14 (76%)

APOE + n 22 72 45
Sex M/F 15/7 (68%) 39/33 (54%) 25/20 (56%)

Age (years, mean � SD) 75 � 6 73 � 6 75 � 7

Education (years, mean � SD) 15.6 � 3.4 15.8 � 2.9 14.6 � 3

APOE + /� 22/0 (100%) 72/0 (100%) 45/0 (100%)

Amyloid+ APOE+ n 15 63 45
Sex M/F 10/5 (67%) 35/28 (56%) 25/20 (56%)

Age (years, mean � SD) 77 � 6 73 � 6 75 � 7

Education (years, mean � SD) 15.5 � 3.8 15.8 � 2.9 14.6 � 3

APOE + /� 15/0 (100%) 63/0 (100%) 45/0 (100%)
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event in Alzheimer’s disease (Hardy and Selkoe, 2002). Third,

brain atrophy rate came before hippocampal atrophy rate, which

is at odds with the findings of MRI regional atrophy rate studies

(e.g. Scahill et al., 2002).

Amyloid + and APOE + subjects

The amyloid + , APOE + and amyloid + APOE + groups (Fig. 1B–D)

showed a distinct ordering of the CSF biomarkers: amyloid-b1–42,

phosphorylated tau, total tau, which replicated the ordering

described by hypothetical models (Jack et al., 2010, 2013a).

Cross-validation (Fig. 1F–H) of the event sequence in these

groups showed a much greater confidence in the ordering of

CSF biomarkers compared to the whole population (Fig. 1E),

which is more heterogeneous. In the amyloid + group (Fig. 1B),

brain atrophy rate was ordered before hippocampal atrophy rate,

but the ordering was weaker than the whole population. In the

APOE + and amyloid + APOE + groups (Fig. 1C–D) hippocampal

atrophy rate clearly occurred before brain atrophy rate.

Patient staging

Cross-sectional distribution of stages

Figure 2 shows the distribution of patient stages for the whole

population. All patient staging results were evaluated for the

whole population using the maximum likelihood event sequence

determined over all subjects (Fig. 1A). The distributions of EBM

stages for cognitively normal and Alzheimer’s disease subjects

were strongly separated and thresholds at middle stages classify

cognitively normal versus Alzheimer’s disease with accuracy

499%. The majority of cognitively normal subjects had no bio-

marker abnormalities, and were assigned stage 0, or abnormalities

only in CSF, and were assigned stages 1–3. A small number of

cognitively normal subjects also showed rates of atrophy events,

and were assigned stages 4–6. Most subjects with Alzheimer’s

disease had abnormal CSF, atrophy rate, cognitive symptoms

and low hippocampal and entorhinal volume, and were assigned

later stages. The majority of subjects with Alzheimer’s disease

were assigned the final stage in the progression, showing that

the model configuration that fits their data best is where all of

the events have occurred. The distribution of mild cognitive im-

pairment stages overlapped with the distribution of stages for cog-

nitively normal and Alzheimer’s disease subjects, but with a

greater concentration of subjects around the middle stages, sug-

gesting that these subjects show CSF abnormalities, abnormal

rates of atrophy, and some cognitive symptoms. To explore the

extent to which choice of cognitive test affects the staging (and

event sequence) output, we assessed the effect of adding in an

additional memory test, the Logical Memory II subscale (delayed

paragraph recall) from the Wechsler Memory Scale-Revised.

Results (not shown) confirm that using this additional cognitive

test score provides a similar distribution of patient EBM stages,

with logical memory occurring immediately before the Rey

Auditory Verbal Learning Test in the event sequence.

Longitudinal consistency

Figure 3 compares each subject’s EBM stage at baseline with their

EBM stage at 12- and 24-month follow-ups. Patient staging

showed good longitudinal consistency, with the EBM stage of

each subject generally increasing or remaining stable at each

follow-up (most points are within or above the grey shaded

area, which represents the uncertainty estimated by the EBM, as

shown in Fig. 1A). The small number of individuals whose EBM

stage decreased longitudinally (below the diagonal) by more than

the uncertainty estimated by the EBM (shaded in grey) were all

subjects who improved from an abnormal to a normal score on

one or more of the three cognitive tests (Mini-Mental State

Examination, Rey Auditory Verbal Learning Test, and ADAS-

Cog) and/or two atrophy rates (brain atrophy rate and hippocam-

pal atrophy rate) with the exception of one subject (circled in

green) whose CSF amyloid-b1–42 levels increased from a clearly

abnormal level of 139 pg/ml at baseline to a more borderline

level of 207 pg/ml at the 12-month follow-up.

Prediction of clinical outcomes

Table 2 shows the balanced accuracy, sensitivity, specificity, area

under the receiver operating characteristic (ROC) curve, and max-

imum accuracy threshold EBM stage for classification of MCI-

stable versus MCI-converters over different follow-up durations.

The balanced accuracy and area under the ROC curve of the

classification were comparable to state-of-the-art classification

techniques (Young et al., 2013). As the duration of the follow-

up increased, the maximum balanced accuracy threshold

decreased, i.e. later EBM stages were better at predicting faster

conversion times. These optimal stage thresholds suggest that ab-

normal CSF measures, atrophy rate, cognitive test scores and hip-

pocampal and entorhinal volume provide the best prediction of

conversion in 42 years, whereas just abnormal CSF, atrophy

rate and ADAS-Cog and Rey Auditory Verbal Learning Test

scores is the combination that best predicts conversion over a

period of 3 to 5 years.
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Figure 2 Proportion of patients in each diagnostic category at

each EBM stage. Proportion of cognitively normal in light blue,

mild cognitive impairment in black, and Alzheimer’s disease in

orange. Each EBM stage on the x-axis corresponds to the oc-

currence of a new biomarker transition event. Stage 0 corres-

ponds to no events having occurred and stage 14 is when all

events have occurred. Events are ordered by the maximum

likelihood event sequence for the whole population as shown in

Fig. 1A.
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The same statistics are shown in Table 2 for classification of CN-

stable versus CN-converters. Again the threshold EBM stage

decreased for increasing follow-up durations, with abnormal CSF

total tau, phosphorylated tau and amyloid-b1–42 levels best pre-

dicting conversion from cognitively normal to mild cognitive im-

pairment over a period of 44 years, but just abnormal CSF total

tau and phosphorylated tau best predicting conversion over 5

years.

Table 3 shows the hazard ratio and statistical significance of

each variable in the Cox proportional hazards models. Increasing

EBM stage was a significant hazard for conversion from both mild

cognitive impairment to Alzheimer’s disease and cognitively

normal to mild cognitive impairment. Figure 4 shows the esti-

mated probability of remaining cognitively normal or mild cogni-

tive impairment depending on baseline EBM stage.

Staging using cross-sectional data alone
We repeated all analyses for purely cross-sectional measures, i.e.

excluding rates of atrophy, to demonstrate the clinical application

of our staging system, where patients need to be staged at one

point in time. Supplementary Table 1 gives demographic
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Figure 3 Longitudinal consistency of patient staging in the whole population over a (A) 12-month and (B) 24-month follow-up period.

The size of the dot plotted at each point corresponds to the number of subjects with that particular baseline and follow-up EBM stage. The

largest dot, at (0,0) represents 19 subjects in A and seven subjects in B, and the smallest dots represent one subject. The grey shaded area

visualizes the uncertainty in the sequence estimated by the EBM (as shown in Fig. 1A). Subjects whose EBM stage is longitudinally

consistent are on or above the line y ¼ x and/or within the grey shaded area. Subjects whose CSF levels (CSF amyloid-b1–42 and/or

phosphorylated tau and/or total tau) change from an abnormal to a normal level at follow-up are circled in green.

Table 2 Classification results for discriminating MCI-stable versus MCI-converters and CN-stable versus CN-converters
using patient stage at baseline

Balanced
accuracy (%)

Sensitivity (%) Specificity (%) AUC Threshold
stage

n-c/n-s

MCI-converters versus MCI-stable

12 months 67 60 73 0.69 12 30/96

24 months 68 57 80 0.71 12 53/64

36 months 77 86 69 0.78 7 65/48

48 months 78 83 72 0.76 7 70/18

60 months 76 84 69 0.77 7 73/16

CN-converters versus CN-stable

12 months 84 100 68 0.76 3 2/90

24 months 66 67 66 0.62 3 6/83

36 months 68 63 73 0.62 3 8/73

48 months 66 58 74 0.65 3 12/49

60 months 76 75 76 0.75 2 16/38

Threshold stage is the maximum balanced accuracy EBM stage for separating stable subjects from converters. Subjects with a baseline EBM stage less than this threshold are
classified as stable and subjects with a baseline EBM stage greater than or equal to this threshold are classified as converters.
AUC = area under receiver operating characteristic curve; n-c = number of converters, n-s = number of stable subjects.
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information for the 325 subjects that met our inclusion criteria, of

which 216 were amyloid + , 159 were APOE + , and 141 were

amyloid + APOE + .

Removing atrophy rates had little effect on biomarker

ordering (Supplementary Fig. 1) or the cross-sectional distribution

(Supplementary Fig. 2) and longitudinal consistency

(Supplementary Fig. 3) of staging. Again, individuals whose EBM

stage decreased longitudinally (below the diagonal) by more than

the uncertainty estimated by the EBM (shaded in grey) improved

from a clearly abnormal to a more normal score on one or more of

the three cognitive tests (Mini-Mental State Examination, Rey

Auditory Verbal Learning Test, and ADAS-Cog) with the exception

of two subjects (circled in green) whose CSF levels (CSF amyloid-

b1–42 and/or phosphorylated tau and/or total tau) changed from

an abnormal to a more normal level at follow-up.

The balanced accuracy for predicting conversion (Supplementary

Table 2) was slightly reduced when the atrophy rates were

removed but was still high, giving a maximum balanced accuracy

of 71% (77% with atrophy rates) for conversion from mild cog-

nitive impairment to Alzheimer’s disease over 3 years, and 70%

(76% with atrophy rates) for conversion from cognitively normal

to mild cognitive impairment over 5 years. On average over all

follow-up durations, the balanced accuracy decreased by 2.6% for

predicting conversion from mild cognitive impairment to

Alzheimer’s disease, and increased by 4% for predicting conver-

sion from cognitively normal to mild cognitive impairment. Again,
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Figure 4 Estimated probability of remaining (A) mild cognitive impairment or (B) cognitively normal for different baseline EBM stages,

obtained by fitting Cox proportional hazards models. These estimated probabilities are shown for the average population demographics

(74.1 years of age, 15.6 years of education, APOE� , male sex). Stages are grouped so that normal (blue) = stage 0, CSF (green) = stages

1–3, atrophy (orange) = stages 4–5, cognition (cyan) = stages 6–10, which includes hippocampal and entorhinal volume as well as

cognitive test scores, volume (magenta) = stages 11–14. See Supplementary Fig. 5 for an extended version of this figure, which includes a

table of the number of subjects at risk at each follow-up time point. MCI = mild cognitive impairment; CN = cognitively normal.

Table 3 Hazard ratios with 95% confidence intervals (CI) for conversion from mild cognitive impairment to Alzheimer’s
disease, and cognitively normal to mild cognitive impairment, obtained by fitting uncorrected and corrected Cox propor-
tional hazards models

Hazard ratio (CI) P-value Corrected hazard
ratio (CI)

Corrected P-value

MCI to Alzheimer’s disease progression

EBM stage 1.15 (1.09–1.21) 1.58 � 10�7* 1.15 (1.09–1.21) 2.06 � 10�7*

Age 0.99 (0.96–1.03) 0.68 0.99 (0.96–1.02) 0.49

Education 0.98 (0.91–1.05) 0.55 0.98 (0.90–1.05) 0.51

APOE4 carrier 1.55 (0.97–2.48) 0.065 1.19 (0.73–1.94) 0.49

Male 0.77 (0.49–1.23) 0.28 0.85 (0.50–1.45) 0.55

Cognitively normal to MCI progression

EBM stage 1.34 (1.07–1.69) 0.012* 1.31 (1.02–1.68) 0.033*

Age 0.99 (0.90–1.09) 0.84 0.98 (0.89–1.08) 0.67

Education 1.03 (0.88–1.22) 0.69 1.02 (0.86–1.20) 0.83

APOE4 carrier 3.15 (1.19–8.30) 0.021* 2.47 (0.85–7.17) 0.096

Male 1.75 (0.65–4.74) 0.27 1.45 (0.49–4.28) 0.5

*P5 0.05. MCI = mild cognitive impairment.
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increasing EBM stage was a significant hazard for conversion from

both mild cognitive impairment to Alzheimer’s disease and cogni-

tively normal to mild cognitive impairment (Supplementary Table 3

and Supplementary Fig. 4).

Discussion
We have adapted the EBM for use with multi-modal sporadic

disease data sets to determine the characteristic ordering of bio-

marker transitions and provide a staging system for disease moni-

toring. We use the EBM here to derive characteristic biomarker

orderings in Alzheimer’s disease from various subgroups of the

ADNI data set and to provide insight into the variability of the

ordering. The orderings provide detailed information on the dy-

namics of large sets of biomarkers across the full duration of

Alzheimer’s disease progression. They describe a distinct sequence

of biomarker transitions in which CSF measures are the earliest to

become abnormal, followed by atrophy rates, and finally cognitive

test scores and regional brain volumes. The recovered ordering

shows less variation in the sequence for amyloid + , APOE + or

amyloid + APOE + individuals than for the whole population,

most likely reflecting that the former are a more homogeneous

group with archetypical Alzheimer’s disease pathology. The results

of the EBM provide entirely data-driven support for hypothetical

models of Alzheimer’s disease progression, such as Aisen et al.

(2010), Frisoni et al. (2010) and Jack et al. (2010), without the

requirement for determining biomarker cut-points (Bartlett et al.,

2012).

The staging system provides a much more detailed evaluation of

patient state than clinical diagnoses. Importantly, it has clear clin-

ical relevance, providing a high accuracy classification of cogni-

tively normal versus Alzheimer’s disease subjects, predicting

conversion from mild cognitive impairment to Alzheimer’s disease

and cognitively normal to mild cognitive impairment, and being

applicable not only to short-term longitudinal data sets (allowing

atrophy measurements), but also to fully cross-sectional data sets

(one visit).

Event sequence

Ordering of cerebrospinal fluid biomarkers

The ordering of the CSF biomarkers in amyloid + and APOE +

individuals supports the ordering of CSF biomarkers predicted by

earlier hypothetical models of Alzheimer’s disease progression: CSF

amyloid-b1–42, phosphorylated tau, total tau. Because amyloid +

individuals are likely to have early Alzheimer’s disease, this group

should represent a much purer Alzheimer’s disease population

than the whole population and thus the biomarker ordering

should reflect the Alzheimer’s disease ordering more closely.

Similarly, APOE4 carriers would also be predicted to shown this

pattern, given the very strong association between APOE4 and

amyloid-b deposition (Andreasson et al., 2013).

In the broader population, however, our results suggest that

CSF total tau and phosphorylated tau may become abnormal

before amyloid-b1–42, i.e. that there are a significant proportion

of subjects who have CSF total tau and phosphorylated tau, but

not amyloid-b1–42 abnormalities, although cross-validation shows

higher uncertainty. Given the results in the APOE + and amyloid +

populations, it seems likely that these subjects reside predomin-

antly in the APOE� and amyloid� populations, and indeed esti-

mation of the ordering using the APOE� and amyloid� subject

groups alone supports this hypothesis, confirming that CSF total

tau and phosphorylated tau events appear earlier than CSF amyl-

oid-b1–42 (data not shown). As discussed recently (Jack et al.,

2013a; Jack and Holtzman, 2013b), there are several potential

explanations for this finding. First, that tau accumulation is a

common feature of aging. Braak and Del Tredici (2011) found

tau pathology to be present in healthy individuals at autopsy

from as early as 20 years of age. These findings are replicated

by the study of Kok et al. (2009), which found neurofibrillary

tangle deposition in a significant proportion of APOE� individuals

between 30 and 59 years of age. Our results, which demonstrate

discrepancies between the ordering in APOE + and APOE� indi-

viduals, would be entirely consistent with these findings, with the

pattern observed in the population as a whole reflecting a mixture

of two populations: one already on the path to developing

Alzheimer’s disease, the other undergoing normal aging, with

total tau and phosphorylated tau a common early feature in

both. A second alternative is that accumulation of tau pathology

may be an early feature of Alzheimer’s disease either for some or

all subjects. Early tau pathology may be more prevalent in APOE�

and amyloid� individuals, or alternatively, as the subjects re-

cruited for ADNI are age-matched, we might not observe early

tau pathology in the APOE + and amyloid + populations who

would be likely to develop Alzheimer’s disease at a younger

age, and thus already have abnormal amyloid levels. A third pos-

sibility is that amyloid accumulation does precede tau deposition,

but that either current CSF amyloid-b1–42 assays are less sensitive

than the CSF total tau and phosphorylated tau assays, or do not

detect the earliest (e.g. oligomeric) abnormal amyloid-b moieties.

Finally, as CSF total tau is not specific to Alzheimer’s disease and is

found in other neurodegenerative diseases, e.g. stroke, trauma

and encephalitis (Blennow et al., 2010), a further alternative is

that individuals have other, perhaps presymptomatic neurodegen-

erative diseases, such as frontotemporal dementa, or dementia

with Lewy bodies. Such individuals might be under-represented

in the APOE + and/or amyloid + groups, which are enriched for

Alzheimer’s disease, and thus more prevalent in the APOE� and

amyloid� groups.

Ordering of magnetic resonance imaging biomarkers

The ordering of MRI biomarkers from the EBM agrees with pre-

vious findings (Thompson et al., 2001; Scahill et al., 2002), with

atrophy rates becoming abnormal before overall volume changes,

and volume changes occurring in a distinct sequence, starting in

the hippocampus and entorhinal cortex, progressing to other tem-

poral lobe areas, the middle temporal gyrus and the fusiform

gyrus, with resulting overall brain volume loss and ventricular ex-

pansion. Results in APOE + subjects also support previous findings

(Schuff et al., 2009; Caroli and Frisoni, 2010), suggesting earlier

hippocampal and entorhinal volume loss, which occur before Mini-

Mental State Examination reduction in the APOE + population and
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after Mini-Mental State Examination in the whole population and

amyloid + population.

One perhaps surprising result of the MRI biomarker ordering is

that the increasing whole brain atrophy rate event occurs before

the hippocampal atrophy rate event both in the whole and amyl-

oid-b+ population. In common with any data-driven model of

biomarker changes, the EBM orders events based on when the

corresponding measurements become discernibly different be-

tween cases and controls. This may not reflect the order of ap-

pearance of underlying pathology as the precision of the

measurements may vary (Fonteijn et al., 2012). Thus, this result

might simply reflect the increased variability associated with meas-

urement of hippocampal over whole-brain atrophy rates

(Leung et al., 2013). Other possible factors are that the results

are influenced by subjects who have a mixture of pathologies,

where other processes occur alongside Alzheimer’s disease that

contribute to brain atrophy rate but not hippocampal atrophy

rate, such as vascular disease (Barnes et al., 2013), or other neu-

rodegenerative diseases (Whitwell et al., 2007). Alternatively,

excess whole brain atrophy may be a core feature of all patients

with Alzheimer’s disease, noting that some individuals with patho-

logically confirmed Alzheimer’s disease have relatively hippocam-

pal sparing disease (Whitwell et al., 2012).

Uncertainty in the event sequence

The uncertainty in the event sequence, as shown by the positional

variance diagrams and cross-validation results, potentially provides

useful information about the variation of biomarker ordering

across the population. However, three main factors contribute to

the uncertainty. First, natural variation: some events may occur in

different orders in different individuals. For example, for APOE +

subjects, hippocampal volume loss may occur earlier than in

APOE� subjects (Schuff et al., 2009; Caroli and Frisoni, 2010);

thus in the whole population that combines both groups, uncer-

tainty is higher. Second, sampling density: when events occur in

close succession, there are likely to be fewer of the data points,

which are required to determine their ordering, that separate

them. Third, outliers: the data set may include subjects who do

not follow any typical progression pattern of Alzheimer’s disease,

e.g. subjects with other neurodegenerative diseases. Although the

model fitting procedure we use is somewhat robust to these out-

liers, they can still affect the posterior distribution on the ordering,

which manifests as uncertainty.

Using the event-based model to define cut points

A major advantage of the EBM is that the ordering of biomarkers

is not dependent on cut points. Instead, the EBM is probabilistic,

calculating the probability that each event has occurred from

models of the distributions of normal and abnormal biomarkers

learned from the data rather than assuming an event has occurred

when a certain threshold value is reached. However, for compari-

son we derived cut point values, given in Table 4, which represent

the point at which the biomarker value is equally likely to be

normal or abnormal, and should therefore be similar to existing

biomarker cut points. The resulting cut points for the CSF bio-

markers are similar to those reported by Shaw et al. (2009),

which were derived using a maximum accuracy classification of

autopsy confirmed Alzheimer’s disease versus healthy controls.

Importantly, the ordering provided by the EBM can be seen not

merely to reflect the ordering of the sensitivity or specificity of

these cut points.

Patient staging
A more directly practical output of the EBM is the data-driven

staging system it provides. Here we demonstrate, for the first

time, the use of such a patient staging measure to predict clinical

outcomes. Our staging measure strongly separates cognitively

normal and Alzheimer’s disease subjects and gives comparable re-

sults to state-of-the-art classification techniques for prediction of

conversion from mild cognitive impairment to Alzheimer’s disease

(Young et al., 2013), albeit with a larger set of biomarkers. The

major advantage of the EBM, a generative model, is that it expli-

citly provides useful information on what drives the classification,

unlike the discriminative models used in Young et al. (2013). We

used the EBM’s staging system to predict conversion from cogni-

tively normal to mild cognitive impairment, as well as mild

cognitive impairment to Alzheimer’s disease, and over different

follow-up durations. The classification results are supported by

the results of the Cox proportional hazards models, which find

EBM stage to be a significant hazard for conversion from both

mild cognitive impairment to Alzheimer’s disease and cognitively

normal to mild cognitive impairment. This suggests that the EBM,

once sufficient control/Alzheimer’s disease data are available,

might have clinical application, providing valuable prognostic

Table 4 Cut point values derived using the event
distributions estimated by the EBM

Biomarker Cut point Sensitivity
(%)

Specificity
(%)

Amyloid-b (pg/ml) 189 92 63

Phosphorylated tau
(pg/ml)

25 88 71

Total tau (pg/ml) 80 77 73

Hippocampal atrophy
(ml/year)

0.138 72 75

Brain atrophy (ml/year) 11.9 64 78

RAVLT 33 92 91

ADAS-Cog 17 97 97

MMSE 27 100 97

Hippocampus (% TIV) 0.423 81 82

Entorhinal (% TIV) 0.214 84 83

Mid temporal (% TIV) 1.19 75 78

Whole brain (% TIV) 64.6 73 66

Fusiform (% TIV) 1.05 73 73

Ventricles (% TIV) 3.04 48 85

Volume measurements (hippocampus, entorhinal, mid temporal, fusiform, whole
brain, ventricles) are summed over the left and right hemisphere and total intra-
cranial volume normalized, and are recorded as a percentage of the total intra-
cranial volume. The sensitivity is the percentage of Alzheimer’s disease subjects
with abnormal measurements, and specificity is the percentage of cognitively
normal subjects with normal measurements, when subjects are classified using

these cut points.
MMSE = Mini-Mental State Examination; RAVLT = Rey Auditory Verbal Learning
Test; TIV = total intracranial volume.

2574 | Brain 2014: 137; 2564–2577 A. L. Young et al.



information on an individual patient basis, and potentially for clin-

ical trial stratification.

Model assumptions
When interpreting these results, it is important to stress that the

EBM is based on strong assumptions, which are explicitly designed

to simplify reality to determine major trends in data. This section

summarizes the key assumptions made in the modelling process,

their potential influence on results, and possibilities to relax the

assumptions in future work.

Event sequence

The EBM, like other data-driven models (Jack et al., 2011; Lo

et al., 2011; Bateman et al., 2012; Buchhave et al., 2012;

Förster et al., 2012; Landau et al., 2012; Villemagne et al.,

2013), assumes that all subjects follow a single progression pat-

tern. While this may be reasonable for the amyloid + and APOE +

groups, the wider sporadic Alzheimer’s disease is likely to show

more variability in the event sequence due to the inherent disease

heterogeneity, driven perhaps by genetic, e.g. the presence or

absence of APOE4 (Schott et al., 2006), or lifestyle factors. The

single sequence the EBM identifies maximizes compatibility within

the set of subjects. It is thus important to consider not only the

most likely sequence, but also the positional variance diagram and

cross-validation output, which explicitly highlight areas of uncer-

tainty, aiding interpretation particularly where the data depart

from the assumptions, for example in heterogeneous groups.

The positional variance diagrams generated directly from the

EBM (Fig. 1A–D) underestimate the uncertainty in the event

ordering, as they do not account for uncertainty in the biomarker

distribution models. The cross-validation results (Fig. 1E–H), on the

other hand, tend to overestimate the uncertainty, because each

iteration considers only a subset of the data. In our whole-popu-

lation analysis, both mechanisms show reasonable stability of the

results, which gives some confidence to the conclusions. However,

it is important to remember that the single sequence does not

represent all subjects and the positional variance diagrams are

only a crude indicator of heterogeneity of the event sequence.

More sophisticated models that can relax the assumption of a

single event ordering, (e.g. Beckett, 1993; Huang and

Alexander, 2012), and/or provide uncertainty estimates by model-

ling the uncertainty in the biomarker distribution parameters, are

important areas for future study.

Patient staging

Although the modelling approach provides a powerful potential

means of patient staging, it is important that such staging infor-

mation is interpreted correctly. While the idealized model for, e.g.

stage 3, is that all CSF biomarkers are abnormal and all others

are normal, a patient assigned stage 3 need not fit this profile

exactly; stage 3 is simply the idealized stage most compatible

with a given individual’s biomarker measurements. This formula-

tion enables the EBM to stage subjects who do not conform to

the maximum likelihood event sequence, which is important

given the heterogeneity of sporadic Alzheimer’s disease. Despite

its idealized nature, the staging system has clear clinical

relevance, as demonstrated by the strong classification perform-

ance and Cox proportional hazards model results; those results

also add confidence to the event sequence derived from the

whole population, which underpins the staging. The probabilistic

nature of the staging system presents opportunities for refine-

ment in future work. Here we assign only the most likely

stage, but using Equation 2 we can quantify the uncertainty in

the stage assignment, which may contain useful additional diag-

nostic and prognostic information. Moreover, also using Equation

2, we can obtain an overall likelihood of conforming to the event

sequence, which should be useful for detecting misdiagnoses or

choosing the most likely diagnosis from a selection of models for

different diseases.

Further applications
The EBM offers a range of possibilities for wider application. This

work focuses on regional imaging measures, CSF and cognitive bio-

markers. Future work will determine the ordering of other

Alzheimer’s disease biomarkers and a more extensive set of regional

imaging biomarkers as in Fonteijn et al. (2012). In particular, includ-

ing FDG and amyloid PET biomarkers, which may help separate

mild cognitive impairment subtypes (Prestia et al., 2013), and in

due course tau-PET will be of considerable interest. This may also

be possible by refining the EBM to allow for missing data, which

would enable it to recover ordering from incomplete data sets; this

would also enable reliable models of the amyloid– and APOE�

groups. Currently the ADNI data set is the only freely available

data set that has a sufficiently large number of subjects, and diver-

sity of biomarkers to support the EBM analysis. Repetition of these

analyses on other Alzheimer’s disease data sets will provide import-

ant validation of our results. An EBM formulation that allows for

missing data could use a range of data sets as input, and output

combined results. Work on such a formulation requires careful stat-

istical evaluation and is on-going. Application of the EBM to other

dementias, such as the various forms of (sporadic and familial)

frontotemporal dementia, vascular dementia or dementia with

Lewy bodies, will provide insight into how the underlying patho-

logical process varies across different types of dementia. It offers the

possibility to obtain staging systems for other diseases, as we show

here for Alzheimer’s disease. Moreover, the generative nature of the

EBM enables differential diagnosis, as the EBM can assign a likeli-

hood of a particular case fitting the sequence for any particular

disease. Furthermore, the technique can be applied to any sequen-

tial mechanism, and so naturally extends to model a wide variety of

other diseases or developmental processes (such as skill acquisition

or normal aging).

Conclusion
We have developed a data-driven model for determining bio-

marker ordering and staging patients. We have used the model

with the ADNI data set to support currently hypothetical models,

but further to highlight uncertainty in those orderings and vari-

ation among different subgroups. We also demonstrate that such

A data-driven model of sporadic AD Brain 2014: 137; 2564–2577 | 2575



a model can provide a practical and effective staging system for

patient prognosis.
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