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Genome-wide Association Analysis Reveals
Putative Alzheimer’s Disease Susceptibility
Loci in Addition to APOE

Lars Bertram,1,6 Christoph Lange,2,6 Kristina Mullin,1 Michele Parkinson,1 Monica Hsiao,1

Meghan F. Hogan,1 Brit M.M. Schjeide,1 Basavaraj Hooli,1 Jason DiVito,1 Iuliana Ionita,2

Hongyu Jiang,2 Nan Laird,2 Thomas Moscarillo,4 Kari L. Ohlsen,5 Kathryn Elliott,5

Xin Wang,5 Diane Hu-Lince,5 Marie Ryder,5 Amy Murphy,2 Steven L. Wagner,5

Deborah Blacker,3,4 K. David Becker,5 and Rudolph E. Tanzi1,*

Alzheimer’s disease (AD) is a genetically complex and heterogeneous disorder. To date four genes have been established to either cause

early-onset autosomal-dominant AD (APP, PSEN1, and PSEN21–4) or to increase susceptibility for late-onset AD (APOE5). However, the

heritability of late-onset AD is as high as 80%,6 and much of the phenotypic variance remains unexplained to date. We performed a

genome-wide association (GWA) analysis using 484,522 single-nucleotide polymorphisms (SNPs) on a large (1,376 samples from 410

families) sample of AD families of self-reported European descent. We identified five SNPs showing either significant or marginally

significant genome-wide association with a multivariate phenotype combining affection status and onset age. One of these signals

(p ¼ 5.7 3 10�14) was elicited by SNP rs4420638 and probably reflects APOE-34, which maps 11 kb proximal (r2 ¼ 0.78). The other

four signals were tested in three additional independent AD family samples composed of nearly 2700 individuals from almost 900 fam-

ilies. Two of these SNPs showed significant association in the replication samples (combined p values 0.007 and 0.00002). The SNP

(rs11159647, on chromosome 14q31) with the strongest association signal also showed evidence of association with the same allele

in GWA data generated in an independent sample of ~1,400 AD cases and controls (p ¼ 0.04). Although the precise identity of the un-

derlying locus(i) remains elusive, our study provides compelling evidence for the existence of at least one previously undescribed AD

gene that, like APOE-34, primarily acts as a modifier of onset age.
In contrast to early-onset autosomal-dominant Alz-

heimer’s disease (AD [MIM 104300]), late-onset AD usually

shows less obvious or no apparent familial aggregation

(‘‘sporadic AD’’). Risk for late-onset AD is probably influ-

enced by an array of common risk alleles distributed across

different genes affecting a variety of biochemical pathways

affecting both the etiology and pathogenesis of AD.

Although the identity and total number of these genes

remain elusive, recent estimates suggest that together

they have a large impact on disease predisposition in the

general population.6 In the attempt to identify the remain-

ing AD susceptibility genes, a large body of evidence has

accrued over the past 30 years, represented by well over

1000 publications genetically implicating or excluding po-

tential risk factors, the vast majority of which were tested

as functional and/or positional candidate genes.7 How-

ever, with the exception of the 34-allele of APOE (MIM

107741), these efforts have mostly led to inconsistent find-

ings, although some polymorphisms show significant but

modest (~1.25) summary odds ratios by meta-analysis

(for an up-to-date overview of AD genetic association stud-

ies see the ‘‘AlzGene’’ database7). Recently, three genome-

wide association analyses, all using case-control designs,

have been published for AD.8–10 All three studies detected
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highly significant association at the APOE locus. In

addition, they reported the discovery of a number of addi-

tional putative AD variants of small effect size, which await

independent replication by other groups.7 Here, we set out

to identify additional AD genes by performing whole-

genome association analysis using 500,668 SNPs on the

GeneChip Human Mapping 500K Array Set (Affymetrix,

Santa Clara, CA, USA) in four well-characterized samples

of AD families.

All data sets tested in this project were originally

collected for the study of genetic factors in AD with fam-

ily-based methods (see Table S1 available online for a de-

tailed summary of sample characteristics). All studies

were approved by the institutional review boards of the ap-

propriate institutions, and all subjects gave informed con-

sent for their participation. With the exception of the CAG

sample (see below), the majority of pedigrees analyzed here

were nuclear families ascertained on the basis of multiple

affecteds, generally lacking parental genotypes. In addition

to containing at least one affected relative pair, many ped-

igrees also had DNA available from additional affected or

unaffected individuals. These were mostly siblings, and

only a minority of additional subjects stemmed from

more extended branches (most of these are part of the
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NIMH sample). The diagnosis of ‘‘definite,’’ ‘‘probable,’’ or

‘‘possible’’ AD was made according to NINCDS/ADRDA11

criteria in all samples. Age of onset for all AD cases was

determined by a clinician on the basis of an interview

with a knowledgeable informant and review of any avail-

able records.

NIMH Families

This sample was collected as part of the National Institute

of Mental Health Genetics Initiative Study12 and com-

prised a total of 1528 subjects from 457 families. Only fam-

ilies in which all affected family members showed an onset

age R50 years, and in which DNA was available from at

least two affected family members, were included in these

analyses, i.e., 1439 individuals from 436 families. Of these,

1376 individuals from 410 families were of self-reported

European ancestry and used for the initial 500K screening.

Fifty-eight individuals from 24 families were of African

descent and were included in the follow-up analyses.

NIA and NCRAD Families

Both of these data sets were obtained from the National

Repository of Research on Alzheimer’s Disease (NCRAD),

and ascertainment and collection details can be found at

the NCRAD website. For this study, we used families of

self-reported European ancestry with DNA available from

at least two first-degree relatives (concordant or discordant)

and in which all individuals affected with AD showed

onset ages R50 years. For the NIA collection, this com-

prised 1040 samples from 329 pedigrees, and for NCRAD,

this comprised 1108 samples from 331 pedigrees.

CAG Families

Samples in this data set were recruited under the auspices

of the ‘‘Consortium on Alzheimer’s Genetics’’ (see Bertram

et al.13 for more details). Probands were included only if

they had at least one unaffected living sibling willing to

participate in this study. As for the other replication

samples, only families of self-reported European ancestry

and with onset ages R50 years were included here, i.e.,

483 individuals from 215 sibships.

We genotyped 500,668 SNPs of the GeneChip Human

Mapping 500K Array Set in 1505 individuals comprising

the publicly available NIMH AD genetics population,

using two chips (Nsp and Sty) that each assayed approxi-

mately 250,000 SNPs per sample. Modifications to the

manufacturer’s protocol (see below and Supplemental

Data) increased the quality and quantity of data obtained

from each chip assay. Genotyping was carried out accord-

ing to the manufacturer’s protocol except for the

following modifications: Restriction enzyme digestion,

ligation, PCR, and purification were completed in 96-well

plates containing 92 samples and four blanks. The PCR

normalization step was performed with a Biomek F/X

robot. After normalization, PCR products were divided

into four separate 96-well plates each containing only 23

samples. Both the fragmentation and labeling steps were
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performed on 23 samples at a time, while a constant tem-

perature with cold blocks was maintained. For the hybrid-

ization step, samples were denatured in hybridization

cocktail for 10 min at 99�C and 2 min at 49�C with an

MJ Tetrad, then transferred immediately to an external

heating block kept at a constant temperature of 49�C. Prior

to sample injection, the 500K arrays were warmed in hy-

bridization ovens at 49�C for at least 10 min. During sam-

ple injection the arrays were maintained at 40�C–49�C and

were immediately returned to the hybridization oven for

19 to 27 hr of incubation at 49�C. Posthybridization

wash, staining, and detection were performed in accor-

dance with the manufacturer’s protocol. The average call

rates increased from 87.5% to 97.3% and from 94.8% to

96.1% for Nsp and Sty arrays, respectively. Out of the en-

tire sample, data from only eight arrays on a total of five

DNA samples failed to exceed a 93% call-rate threshold

necessary to be included in the analyses. Genotype calls

were based on the Bayesian Robust Linear Model with Ma-

halanobis Distance algorithm (BRLMM14) for which we de-

veloped an improved protocol that led to greater call rates

without affecting accuracy or reproducibility of the data

and that was used here (see below). Overall, our protocol

achieved an average SNP genotype call rate of 98.95%.

SNPs with genotype call rates below 90% (5758 markers

[1.1%]) were excluded. In addition, we excluded all SNPs

located on the X chromosome (10,388 markers [2.1%],

resulting in 484,522 markers used in the whole-genome

association analyses. SNPs on the X chromosome were

excluded because there is currently no method available

for association testing of these markers in family-based

settings.

We accepted only genotype calls passing a stringent

quality-control threshold in which 93% of the SNPs on

a 250K array yielded a genotype (with the DM algorithm

at a confidence threshold of 0.33). Of the 3010 500K Gene-

Chips necessary to complete genotyping of our family-

based sample set, only eight chips failed to meet or exceed

the 93% call-rate threshold. The DM algorithm calculates

genotypes for one sample at a time, relying on assump-

tions about the behavior of SNP allele signals. However,

an alternative genotype-calling algorithm was recently de-

veloped by Rabbee and Speed termed Bayesian Robust Lin-

ear Modeling using Mahalanobis Distance (BRLMM14).

The BRLMM method simultaneously analyzes data from

multiple chips, by calling genotypes via multiple-sample

cluster analysis. BRLMM accounts for probe effects on

variation in allele signal intensity of individual SNPs in

making genotype calls. This new algorithm is an improve-

ment over DM in terms of overall call rates, accuracy, and

detection of heterozygous genotypes. Both Affymetrix and

The Broad Institute (MIT/Harvard) have shown improved

efficacy of genotyping calling by using BRLMM on their

data sets.

We compared the DM and BRLMM genotype-calling al-

gorithms with respect to call rates, accuracy, and concor-

dance on our 500K data set. Initial analysis of our data
er 7, 2008



with BRLMM increased the number of heterozygous geno-

types (Figure S1), as well as the total number of genotypes

called (data not shown). Accuracy of called genotypes was

assessed via inheritance-error checks on replicate data with

varying DM-derived call rates, collected for a family trio

(mother, father, and child) contained in our data set.

Inheritance errors consistently decreased with increasing

initial DM call rate (Table S2), and even fewer inheritance

errors were observed when BRLMM analysis was applied.

Overall, genotype calls made by DM and BRLMM were in

close agreement with one another, and the concordance

increased with data from chips having higher initial DM

call rates, indicating that higher call-rate data is more

reliable (Figure S2A). Although BRLMM was able to make

calls on a significant number of SNPs that were previously

not called with DM, we did observe the reverse scenario

as well, albeit with a much lower number of SNPs

(Figure S2B).

Because the BRLMM algorithm processes chips in

batches and uses a clustering algorithm to make genotype

calls, we determined whether batch size and/or batch com-

position had an effect on call rate. Experiments were car-

ried out with batch sizes of 50 and 100 chip-data CEL files.

We tested samples with moderate (93%), good (95%), and

excellent (98%) chip call rates1 and processed them in

varying batch environments. Single test samples (e.g.,

93% initial DM call rate) were grouped with samples that

had (1) like or similar call rates (e.g., 93%), (2) mixed call

rates (samples with call rates ranging between 93% and

99%), or (3) unlike or dissimilar call rates (e.g., 98%). CEL

data files were analyzed in ‘‘like,’’ ‘‘mixed,’’ and ‘‘unlike’’

environments with the BRLMM algorithm. The ‘‘mixed’’

environment was designed to emulate the batch composi-

tion one would obtain if processing batches were built ran-

domly. Contrary to our expectations, we found that batch

context does make a difference in genotype calling effi-

cacy. Specifically, we observed that call rates for the test

samples were substantially improved when processed

with data files of similar call rates (Figure S3). The most dra-

matic results were observed with samples at the lower end

of the range of DM call rates tested, those with ‘‘moderate’’

call rates (93%). For example, when a sample with a moder-

ate DM call rate was called in a batch environment

composed of moderate DM call-rate samples, chip call rates

were boosted substantially. Chip call rates for these sam-

ples were consistently superior in the ‘‘like’’ environment

rather than the ‘‘unlike,’’ boosting call rates on average

2.3% 5 0.9%. In addition, the ‘‘like’’ environment consis-

tently outperformed the ‘‘mixed’’ environment, boosting

call rates on average 0.5% 5 0.4%.

Chips from the ‘‘good’’ (95%) and ‘‘excellent’’ (98%) call-

rate1 classes showed a similar pattern to the ‘‘moderate’’

chips when analyzed in the three different batch environ-

ments with BRLMM; however, this trend was not absolute.

The majority of the cases tested showed improved call rates

when analyzed in ‘‘like’’ environments as compared to

‘‘mixed’’ or ‘‘unlike’’ environments, with a few exceptions
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(Figure S3). To better understand this ‘‘batch-effect’’ phe-

nomenon, we investigated the properties of probe signals

for several SNPs in which a genotype was called in the

‘‘like’’ environment and not called in the ‘‘unlike’’ environ-

ment. For the SNPs of interest, the BRLMM-derived allele

signal for of all SNPs in the cluster of samples was trans-

formed into Cluster-Center-Stretch space (see the Affyme-

trix website and Figure S4). This example illustrates that

both the allele contrast and the signal strength can shift

markedly with different input data sets. Given this phe-

nomenon, it is clear that the contents of a data set can in-

fluence the genotype-calling behavior for some outlying

samples. Indeed, it is evident in this example that the un-

called genotype (blue triangle, Figure S4B) fell well outside

of the expected cluster (pink triangles) and was thus not

called. Examination of several such examples showed

two trends that help explain the ineffectiveness of high

DM call-rate batches to call lower DM call-rate raw data:

(1) The genotype clusters for high DM call-rate data are

typically tighter than those from lower call-rate data. (2)

The signal strength (y axis) axis is generally higher for

high call-rate data. The differences observed underscore

the need to process CEL-data files in batches with similar

or mixed call rates, in order to create genotype-calling clus-

ters that are valid for all samples in the batch. These exper-

iments suggest that call-rate outcome with BRLMM can

vary, depending on the batch environment chosen for

analysis, and that careful attention to the batch selection

can improve the number of genotypes called by greater

than 2%. On the basis of the analysis above, we developed

a ‘‘workflow’’ for maximizing SNP call rates while main-

taining high accuracy and reproducibility of our data. We

used DM as an initial quality measure for individual chips

and then reanalyzed the raw data with the BRLMM algo-

rithm in appropriately defined clusters. With this method,

the average chip call rates across the entire sample set

improved to 98.95% with BRLMM (Figure S5) with over

half of the chips yielding genotype calls for greater than

99% of the SNPs assayed (Figure S5).

In addition to the chip-based genotypes, we also geno-

typed all four SNPs implied by the GWA analyses as well

as APOE SNPs rs429358 and rs7412 in all four samples

with high-efficiency fluorescence polarization (HEFP)

detection of a single-base extension assay.15 The HEFP

procedures were essentially identical to those previously

described.13 Primer sequences and thermocycling condi-

tions are available on request. Neither genotyping method

showed evidence for Mendelian errors for these four SNPs,

although our power to detect such inconsistencies is low

because of the lack of parental genotypes (see above) and

relatively small family size.

Association analyses were performed with PBAT (v3.6),

an extension16 of the family-based association test (FBAT)

program.17 To maximize statistical power, we tested AD

affection status and age of onset jointly, using the multi-

variate extension of the FBAT-approach, FBAT-GEE.18 To

minimize the multiple testing problem, we applied the
n Journal of Human Genetics 83, 623–632, November 7, 2008 625



weighted Bonferroni-testing strategy by Ionita-Laza et al.19

which is an extension of the VanSteen algorithm.20 On the

basis of the between-family information that is statistically

independent from the FBAT-statistic,20 the testing strategy

evaluates the evidence for association at a population level

and then estimates the conditional power of the FBAT-GEE

statistic for each marker in the first step. The FBAT-GEE sta-

tistic contains affection status and time to onset as pheno-

types, coded as Wilcoxon statistic. The choice of which sta-

tistic to use in the association test is determined on the

basis of the highest conditional-power estimate for each

coding. In the second step of the testing strategy, FBAT sta-

tistics are computed for all markers. Because none of the

traits here were quantitative, the conditional power was es-

timated on the basis of the nonparametric extension of the

conditional mean model approach to dichotomous traits

and time-to-onset variables proposed by Jiang et al.21 Their

significance is assessed on the basis of individually ad-

justed alpha levels that maintain the overall type 1 error

and that are weighted on the basis of the conditional-

power estimate for the corresponding marker according

to their conditional-power estimates. The computation of

the weights is described in detail in Ionita-Laza et al.19

Here, the approach was applied with the following tuning

parameters: The size of the first partition was five and the

parameter was set to two. When the weighted Bonfer-

roni-approach was applied to the 809,208 p values of the

FBAT-GEE statistic for AD affection status and time to on-

set, four SNPs not related to APOE 34 reached genome-

wide significance (thresholds for genome-wide signifi-

cance are p % 5 3 10�3 for markers rs11159647,

rs179943, and rs2049161, and p % 4.88 3 10�6 for

rs3826656). Affection status was coded with an offset of

0.10 (approximate prevalence of AD among individuals

over 65 years). Sensitivity analyses using offsets ranging

from 0.05 to 0.2 did not change the results appreciably

(data not shown). The age of onset variable was con-

structed with the Wilcoxon approach.21 Although SNPs

on the X chromosome and those with low call rates or

poor reproducibility across duplicated genotypes were ex-

cluded from the analyses (16,146 SNPs), we retained

SNPs that deviated from HWE, which affected a total of

~85,000 SNPs at p ¼ 0.01, and ~56,000 at

p ¼ 0.001. Approximately half of the HWE-deviating

SNPs showed low minor allele frequencies (%0.10). Inclu-

sion of HWE-deviating SNPs was based on the assumption

that most departures from HWE in this context are caused

by miscalling heterozygous genotypes. Under these cir-

cumstances, dominant and recessive models, which treat

the heterozygous genotype and one of the homozygous

genotypes as one category, will provide test results that

are fairly robust against such genotyping errors. This was

the case for marker rs326656, which significantly deviated

from HWE (p ¼ 1 3 10�23) in the 500K data set, but not in

the families of the follow-up samples (all p values > 0.05),

which were genotyped with the HEFP technology (see

above). Regenotyping of this SNP by HEFP in the NIMH
626 The American Journal of Human Genetics 83, 623–632, Novem
families resolved the HWE deviation (p ¼ 0.6), decreasing

the statistical significance to p ¼ 0.04 in the FBAT-GEE

analyses. The FBAT-GEE test statistics were only calculated

for SNPs for which the number of informative families was

at least 20 (i.e. 404,604 out of the 484,522 SNPs with avail-

able genotypes). The 404,604 SNPs were tested under addi-

tive and dominant transmission models. Accordingly, all

nominal p values were adjusted conservatively for 2 3

404,604 = 809,208 comparisons, with the weighted Bon-

ferroni method by Ionita-Laza et al.13 We calculated p

values on the combined samples by using the method de-

scribed by Fisher22 taking into account the direction of the

transmissions in each individual sample. Pairwise LD esti-

mations were performed in Haploview (v3.32) on the 500K

SNP chip genotype data in self-reported European NIMH

families (using the regenotyped data for rs4777936) as

well as on genotype data available on the International

HapMap Consortium website (public release #22 based

on NCBI build 36 [dbSNP b126]).

In the first stage of our project, we screened 1376 indi-

viduals from 410 families of self-reported European

descent from the National Institute of Mental Health

(NIMH) Genetics Initiative Study sample, the largest uni-

formly ascertained and evaluated AD family sample to

date.12,23 We optimized methods for both the genotyping

assay and genotype-calling algorithm that led to increased

quality and quantity of the data (see above). After removal

of all 10,388 X chromosome markers, as well as 5,758 SNPs

that did not pass genotype quality assessment or showed

a minor allele frequency (MAF) that resulted in less than

20 informative families, a total of 404,604 (80.8%) SNPs

were used for the whole-genome screening. Statistical anal-

yses were performed in PBAT with affection status and age

of onset as a multivariate phenotype in the FBAT-GEE

statistic for which p values were adjusted on the basis of

the weighted Bonferroni-testing strategy by Ionita-Laza

et al.19 The Q-Q plot displaying observed versus expected

p values shows that the overall alpha level is maintained,

despite a slight departure from the expected values for the

smallest p values (Figure 1). After correction for the num-

ber of tests performed, four markers not related to APOE

34 attained genome-wide significance at an overall alpha

level of 5%. The first marker, rs4420638 (p ¼ 5.7 3

10�14), is located 340 bp 30 of APOC1 on chromosome

19q13 and very likely reflects the well-established effects

of the APOE 34-allele (rs429358), which maps 11 kb prox-

imal (r2 between both SNPs ¼ 0.78) and shows highly sig-

nificant association in the NIMH families as well as the

three follow-up data sets (see below and Schjeide et al.24).

The other markers are rs11159647 (p ¼ 0.001; located in

predicted gene NT_026437.1360 on chromosome

14q31.2), rs179943 (p ¼ 0.002; in ATXN1 [MIM 601556]

on chromosome 6p22.3), rs3826656 (p¼ 4 3 10�6; located

in predicted gene NT_011109.848 on 19q13.33), and

rs2049161 (p ¼ 0.002; in cDNA BC040718 on 18p11.31).

None of these markers were previously described as modi-

fiers of AD risk or onset age. Interestingly, with the
ber 7, 2008



exception of rs2049161, all SNPs are located either in or

close to previously described early- and late-onset AD link-

age regions.7,23 Analyses using affection status and age of

onset as separate phenotypes revealed that SNP

rs11159647 on chromosome 14q31.2 was primarily associ-

ated with age of onset ([two-tailed] p ¼ 0.006, median re-

duction in onset age 1.1 years; odds ratio [OR] ~1.4;

Figure 2A), whereas the remaining markers only showed

association in the analyses using affection status (ORs

ranging from ~1.1 to 1.3). All markers showed their stron-

gest signals in an additive transmission model, with the ex-

ception of SNP rs3826656 on chromosome 19q13.33, for

which dominant transmission of the minor allele yielded

the strongest association. None of the four markers showed

evidence of association in NIMH families of African Amer-

ican descent, possibly because of lower power in that this

subset only consists of 24 families (data not shown).

We next assessed whether any of the non-APOE signals

also show association with AD in three additional and

independently collected family samples of self-reported

European ancestry (‘‘NIA,’’ ‘‘NCRAD,’’ and ‘‘CAG’’) by gen-

otyping the same SNPs for which association was observed

in the genome-wide analyses. The vast majority of these

families are made up of sibships (either concordant or dis-

cordant for AD), with a total of 2689 individuals (1816 af-

fecteds and 845 unaffecteds). Upon combining results

across all three replication samples (with Fisher’s com-

bined probability test) we observed significant association

with the multivariate phenotype for two of the four SNPs

tested ([one-tailed] p values 0.00002 [rs11159647] and

0.007 [rs3826656]; Table 1; Figure 2B). A third SNP showed

a trend toward association in the replication samples but

Figure 1. Q-Q Plot of Markers Tested in the GWA Screening
Phase
Distribution of FBAT-GEE p values for all 404,604 SNPs on the 500K
array with R20 informative families as Q-Q plot depicting
observed versus expected p values.
The America
only in the analyses using affection status as phenotype

([one-tailed] p ¼ 0.06 [rs179943]; Table 1). The fourth

SNP (rs2049161), which was only marginally associated

with AD in the primary 500K screen, did not show any

consistent pattern of association in the replication sam-

ples. We next investigated whether any of the four SNPs

showed association in the two recently published AD

GWA analyses, for which genotype data were made pub-

licly available. Because these data did not include sub-

ject-level age-of-onset information, only test statistics us-

ing affection status could be calculated (Table 2).

rs11159647 on chromosome 14q, the SNP demonstrating

the strongest association with AD in our family-based

Figure 2. Kaplan-Meier Survival Curves for rs11159647 in
500K Screening Sample and Combined Follow-Up Data Set
Dotted lines represent carriers of the A/A genotype, broken lines
are A/G-carriers, solid lines are G/G-carriers. (A) shows the NIMH
sample used in the 500K screen. (B) shows the sample after
combining all follow-up samples (NIA, NCRAD, and CAG).
n Journal of Human Genetics 83, 623–632, November 7, 2008 627



Table 1. Results of Whole-Genome Association Screening and Follow-Up Analyses using Family-based Samples

SNP Model

NIMH (500K) NIA NCRAD CAG Replication NIMH þ Replication

p
(two-tailed) Fams

p
(one-tailed) Fams

p
(one-tailed) Fams

p
(one-tailed) Fams

p
(one-tailed) Fams

p
(two-tailed) Fams

rs11159647

FBAT-GEE add 0.001 200 0.000005 176 0.045 163 0.35 89 0.00002 428 0.000002 628

Affection

status

add 0.05 128 0.4 104 0.02 100 0.2 89 0.05 293 0.07 421

Age of onset add 0.006 200 0.002 176 0.0035 163 0.2 89 0.0001 428 0.00005 628

rs179943

FBAT-GEE add 0.002 76 0.065 48 0.8* 53 0.2 29 0.15 130 0.008 206

Affection

status

add 0.007 55 0.04 27 0.8* 31 0.07 29 0.06 87 0.008 142

Age of onset add 1 76 0.2 48 0.9* 53 0.1 29 0.25 130 0.4 206

rs3826656

FBAT-GEE dom 0.000004 123 0.15 127 0.25 110 0.004 75 0.007 312 0.000006 435

Affection

status

dom 0.02 90 0.03 79 0.4 69 0.035 74 0.015 222 0.01 312

Age of onset dom 0.6 123 0.07 127 0.3 110 0.07 75 0.05 312 0.3 435

rs2049161

FBAT-GEE add 0.002 122 0.8* 129 0.8* 109 0.04 57 0.3 295 0.006 417

Affection

status

add 0.04 78 0.9* 83 0.75* 72 0.25 53 0.7 208 0.1 286

Age of onset add 1 122 0.9* 129 0.6* 109 0.2 57 0.65 295 0.7 417

FBAT-GEE refer to analyses using affection status and age at onset as a multivariate phenotype. The p values are nominal and two-tailed for results

including NIMH families, and one-tailed for results solely based on the replication samples (NIA, NCRAD, and CAG). The p values for combined samples

are one-tailed for the replication samples only (‘‘Replication’’) and two-tailed for NIMH and replication samples combined (‘‘NIMH þ Replication’’) and

calculated by methods described previously (see Fisher22). Fams, informative families. Asterisks represent association with opposite allele as compared

to 500K analyses (associated alleles in 500K analyses were ‘‘A’’ [rs11159647], ‘‘T’’ [rs179943], ‘‘G’’ [rs3826656], and ‘‘C’’ [rs2049161]). Age of onset coding

based on Wilcoxon statistic. Thresholds to achieve genome-wide significance on the basis of the method by Ionita-Laza et al.19 are p % 5 3 10�3 for

markers rs11159647, rs179943, and rs2049161, and p % 4.88 3 10�6 for rs3826656.
analyses, revealed nominally significant association with

the same allele in the TGEN data set ([one-tailed] p ¼
0.04; see Reiman et al.8). Meanwhile, rs2049161 on chro-

mosome 18p showed nominally significant association in

the GSK data set ([one-tailed] p ¼ 0.045; see Li et al.10).

Interestingly, this latter SNP was the only marker not
628 The American Journal of Human Genetics 83, 623–632, Novemb
showing any consistent evidence of association in our

family-based replication samples (see above). rs179943

did not show evidence of association in either of the two

previously published GWA screens; no analyses could be

performed for rs3826656 because it was missing from

both case-control GWA data sets.
Table 2. Comparison of Family-Based versus Published Case-Control GWA Findings for the Signals Identified in the NIMH 500K
Screen

SNP Model

NIMH (500K) TGEN8 GSK10

p (two-tailed) Fams p (one-tailed) n (AD þ CTRL) p (one-tailed) n (AD þ CTRL)

rs11159647, with affection status add 0.05 128 0.04 1384 0.9* 1315

rs179943, with affection status add 0.007 55 0.8* 1376 0.5* 1368

rs3826656, with affection status dom 0.02 90 N.A. N.A. N.A. N.A.

rs2049161, with affection status add 0.04 78 0.2 1407 0.045 1386

Family-based (NIMH) p values are two sided and identical to those of Table 1. Case-control (TGEN7 and GSK10) p values are one sided, on the basis of

an allelic chi-square test (1 d.f.) with the genotype frequencies of the original publications (note that the FBAT-GEE and age of onset statistics could

not be computed here because of the lack of onset-age data in the original reports). The results presented in this table are based on the complete

data sets made available by the authors of the respective studies. Fams, informative families. The asterisks represent association with opposite allele

as compared to 500K analyses (see identity of associated alleles in legend to Table 1). ‘‘N.A.’’ represents no data provided for this marker. Significant

p values are represented in bold.
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In two separately performed projects,24,25 we assessed

whether any of the currently most promising putative

AD susceptibility loci (based on a recent freeze of the

AlzGene database), including all five recently pinpointed

by the two high-density case-control GWA studies,8,10

showed association in the four family data sets tested

here. After combining results across all four samples with

the same analytical methodology applied here, we ob-

served nominally significant association with variants in

ACE (MIM 106180), CHRNB2 (MIM 118507), GAB2 (MIM

606203), TF (MIM 190000), and an as-yet-unidentified

locus on chromosome 7p15.2. Of these, GAB28 and the

7p15.2 locus9 were originally implicated by GWA associa-

tion analyses. Note, however, that the level of statistical

support for each of these loci was several orders of magni-

tude smaller (i.e., combined p values ranging between

0.03 and 0.002) than that observed for the chromosome

14 locus identified here. Variants in other recently reported

potential AD genes, such as SORL1 (MIM 602005) and

GOLM1 (a.k.a. GOLPH2 [MIM 606804]; see AlzGene data-

base for details), did not show any significant evidence in

these analyses.

Our findings are noteworthy for a number of reasons.

First, to our knowledge, this is the first GWA analysis using

family-based methods to be reported in the field of AD. For

two of the four non-APOE SNPs, the initial evidence for

genetic association was replicated in three independent

collections of AD families of self-reported European de-

scent, whereas a third SNP showed at least a trend toward

association in the analyses limited to affection status.

Moreover, for the SNP exhibiting the strongest and most

consist family-based association with AD in our analyses,

rs11159647, we also observed statistically significant asso-

ciation of the same risk allele with AD in an independent

collection of cases and controls that had been probed

with the same 500K SNP array.8 Collectively, these data

strongly argue for the presence of a genuine AD susceptibil-

ity locus in the vicinity of marker rs11159647 on chromo-

some 14q31.2. In addition, our analyses highlight two

further putative AD loci located on chromosomes 6p22

and 19q13. Second, we used a quantitative analysis

approach combining the two most widely available pheno-

types in AD samples, i.e., age of onset and affection status.

This has the advantage of increasing power while ensuring

consistency of the findings across both phenotypes.18,21

Power calculations reveal that minimally ~700 combined

cases and controls are required for detection of the addi-

tively transmitted rs11159647 risk effect (i.e., an allelic OR

of ~1.4) at a ¼ 0.05 in order to achieve 80% power and

minimally ~2,300 (~8,600) samples for the more modest

risk effects of SNPs rs3826656 and rs179943. Third, the

association signal for rs11159647 maps to the distal end

of a genetic linkage region identified earlier by our group

in a whole-genome linkage screen of the NIMH sample,12

as well as in an independent collection of Caribbean His-

panic families that used age of onset as a phenotype.26 In

our own previous report, most of the linkage evidence orig-
The Americ
inated from families with an ‘‘early/mixed’’ onset age, i.e.,

those families in which at least one affected family mem-

ber, showed an onset age prior to 65 years.23 This is in

good agreement with the decrease in onset age observed

here in individuals carrying the A allele at rs11159647. A

similar observation was made with the whole-genome

linkage signal encompassing the APOE region on chromo-

some 19q13, which was also most pronounced in families

with an ‘‘early/mixed’’ onset age.23 Interestingly, the other

two putative signals implied by our GWA and follow-up

analyses map to chromosomes 6p22 and 19q13, which

were also highlighted by genome-wide linkage analyses

of our and other groups.7,23

Despite the compelling statistical and genetic epidemio-

logical evidence strongly implicating the presence of a

putative AD gene on chromosome 14q, and possibly addi-

tional loci on chromosomes 6p22 and 19q13, the potential

functional and pathophysiological consequences of our

findings remain elusive. According to the UCSC genome

browser (hg18, NCBI Build 36.1), the genomic region in

the vicinity of the AD-associated SNP, rs11159647, on

chromosome 14q31 does not contain any known RefSeq

genes. This SNP resides at position 83,844,962 bp on chro-

mosome 14 in an intron of the Genscan-predicted gene,

NT_026437.1360 (Figure 3), which spans 723,153 bp.

The coding region of this predicted gene in the region of

rs11159647 reveals no significant homologies to other

genes or coding regions in GenBank. Interestingly, the 30

end of this predicted gene contains exons with homology

to the C2H2-type kruppel-like zinc-finger protein 268

(ZNF268 [MIM 604753]; see Gou et al.27). However, the

AD-associated SNP, rs11159647, is >350 Kb from the

ZNF268 homologous region, and SNPs in this region reveal

no linkage disequilibrium with rs11159647. There are

three expressed sequence tags (ESTs) residing within 60

Kb on either side of rs11159647. These include ESTs,

M85511, CA390254, and AI003603. All three ESTs are ex-

pressed in the brain and are encoded within the same re-

gion as the predicted gene, NT_026437.1360. However,

the predicted exon structure of these ESTs does not align

with the predicted exons of NT_026437.1360. Thus, these

ESTs may represent exons of separate gene(s) in this region,

which are expressed in the brain. It is also worth noting

that SNPs in these three ESTs display varying degrees of

LD with rs11159647. BLAST analyses of these ESTs reveal

no significant homologies with any known genes. Figure 3

illustrates the LD patterns in the region surrounding

rs11159647, whereas Figure 4 shows that there are several

other SNPs within ~200 kb yielding evidence for associa-

tion with AD on the 500K array, thereby delineating the

chromosomal region that should be targeted by subse-

quent fine-mapping efforts. SNP rs179943, on 6p22.3 at

position 16,506,297 bp, resides within an intron of the

ataxin 1 (ATXN1) gene, in which an elongated polyglut-

amine tract causes the progressive neurodegenerative dis-

ease spinocerebellar ataxia (SCA1 [MIM 164400]), charac-

terized by progressive degeneration of the cerebellum,
an Journal of Human Genetics 83, 623–632, November 7, 2008 629



Figure 3. Genomic Context of the Chromosome 14q31 Association Signal
Linkage disequilibrium structure and location of Genscan Gene predictions (NTSs) in a 500 kb interval encompassing rs11159647 on
chromosome 14q31.2.
brain stem, and spinal cord.28 SNP, rs3826656, on 19q13.33

at position 56,418,175 bp, resides in a region that contains

no known RefSeq genes. However, this SNP resides in a pre-

dicted Genscan gene, NT_011109.848, spanning 126,319

bp. The 3’ portion of this locus overlaps with the gene en-

coding human protein CD33 (MIM 159590). CD33, also

known as SIGLEC3, encodes a cell-surface receptor on cells

of monocytic or myeloid lineage. It is also a member of the

SIGLEC family of lectins that bind sialic acid and regulate

the innate immune system via the activation of caspase-de-

pendent and caspase-independent cell-death pathways.29

Finally, rs2049161, on 18p11.31 at position 4,117,583 bp,
630 The American Journal of Human Genetics 83, 623–632, Novemb
resides within an intron of BC040718, a gene of currently

unknown function.

In conclusion, to our knowledge this is the first study to

employ a family-based GWA approach to AD. In addition

to a likely APOE 34-related effect, we obtained compelling

evidence for genome-wide significant association between

AD and at least two additional SNPs. The replication of these

associations in three independent AD family samples—and

in the case of rs11159647 also in one independent case-con-

trol GWA data set—strongly implies the existence of AD

susceptibility loci that warrant follow up in additional inde-

pendent samples as well as in functional genomic analyses.
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Figure 4. Association Results of
Markers within 500 kb of the Chromo-
some 14q31 Association Signal
Distribution of association results of SNPs
on the 500K array within 5250 kb of SNP
rs11159647 on chromosome 14q31 show-
ing genome-wide significance in the NIMH-
CAU sample (FBAT-GEE statistic, additive
model).
Supplemental Data

Supplemental Data include two tables and five figures and can be

found with this article online at http://www.ajhg.org/.
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