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We have genotyped 292 affected sibling pairs (ASPS)
with Alzheimer’s disease (AD) according to NINCDS—
ADRDA diagnostic criteria and with onset ages of
=65 years using 237 microsatellite markers separated
by an average distance of 16.3 cM. Data were analysed
by SPLINK and MAPMAKER/SIBS on the whole sample
of 292 ASPs and subsets of 162 ASPs where both
members possessed an apolipoprotein E (APOE)
€4 allele and 63 pairs where neither possessed an
€4 allele. Sixteen peaks with a multipoint lod score
(MLS) >1 either in the whole sample, the  €4-positive or
-negative subgroups were observed on chromosomes

1 (two peaks), 2, 5, 6, 9 (two peaks), 10 (two peaks), 12,
13, 14, 19, 21 and X (two peaks). Simulation studies
revealed that these findings exceeded those expected
by chance, although many are likely to be false positives.
The highest lod scores on chromosomes 1 (MLS 2.67),
9 (MLS 2.38), 10 (MLS 2.27) and 19 (MLS 1.79) fulfil
Lander and Kruglyak’s definition of ‘suggestive’ in that
they would be expected to occur by chance once or
less per genome scan. Several other peaks were only
marginally less significant than this, in particular those

on chromosomes 14 (MLS 2.16), 5 (MLS 2.00), 12, close
to a2-macroglobulin (MLS 1.91), and 21, close to amyloid
precursor protein (MLS 1.77). This is the largest
genome scan to date in AD and shows for the first time
that this is a genetically complex disorder involving
several, perhaps many, genes in addition to APOE.
Moreover, our data will be of interest to those hoping

to identify positional candidate genes using information
emerging from neurobiological studies of AD.

INTRODUCTION

Alzheimer’s disease (AD) is a progressive neurodegenerative
disorder that occurs predominantly in later life. It is the
commonest cause of dementia and represents the fourth largest
cause of death in the developed wotld (

To date, four genes have been implicated in the aetiology of
AD. Mutations in three of these, coding for the amyloid precursor
protein (APP) 2), presenilin 1 (PS-1)3(4) and presenilin 25)
account for most cases of autosomal dominant familial AD (FAD)
(6). However, FAD accounts for <1% of all cases of AD. The
inheritance of common forms of the disorder appears considerably
more complex and probably reflects the co-action or interaction
of several or many genes together with environmental factors.
One gene that is clearly implicated in this form of the disorder is
that encoding apolipoprotein E (APOE). Td4eallele of APOE,
although neither necessary nor sufficient to cause AD, is
associated with increased risk of both early and late onset disease
(7). The effect o€4 appears additive such that heterozygotes and
homozygotes are, respectively, approximately three and eight
times more likely to be affected than controf3. (However,
variation at the APOE locus accounts for at mi@% of the
genetic variation in liability&) to develop the disorder and there
must be other genetic variants that account for the remaining risk.

A number of strategies are available for mapping genetically
complex traits §). Traditional lod score analysis in multiplex
pedigrees is best suited to forms of a disorder showing obvious
Mendelian inheritance. This approach is clearly applicable to
FAD, where successes have already been evident. However, the
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lod score method is at its weakest when the mode of transmissidiLS 2.16), 5 (MLS 2.00), 12 (MLS 1.91) and 21 (MLS 1.77).
is complex and the genetic parameters cannot be accurat®¥lfe did not observe any ‘significant’ linkages (i.e. genome-wide
specified. Itis generally agreed that the best way to proceed unaecurrence probability <0.05) since our simulation results indicate
such circumstances is by a combination of allele sharing linkagleat a lod score diB.6 would be required for this (Tatie
methods in pairs of affected siblings or other relative pairs and

association studie9,(L0). A number of candidate gene associationTable 1.Maximum multipoint lod scores and peak identity by descent (IBD)
studies have been performed in AD since the identification of thaaring probabilities

APOE locus. Some positive findings have been claim&el()
but unfortunately none of these has been consistently confirme&hromosome Whole IBD ~ Both  IBD ~ Both  IBD

These inconsistencies are likely to be due to a number of factors sample g4tve g4-ve
that bedevil genetic association studies, including heterogeneitya 0.02 0.00 135  0.67
issues of statistical power, multiple testing and population, 5 133 0.56 267 0.61 0.00
stratification @1). Moreover, at the present time, association
studies can only be based on testing of genes whose candidatdre 0.49 101 057 036
is suggested by an existing understanding of the pathophysiology. 1.07 055 200 061 0.0
In contrast, a systematic genome screen using allele sharing 0.48 140 060 085
linkage methods offers the potential to identify novel pathogenic
pathways and mechanisms. Consequently we have carried ou 0.00 0.00 1.12 0.64
two-stage genome scan in 600 affected sibling pairs (ASPs) withB 115 0.56 2.38 0.62 0.00
AD. In the first phase we have genotyped 292 ASPs with a 20 cMga 297 0.60 2925 061 0.92
grid of markers and report the results here. 108 0.2 0.00 117 0.63
12 0.89 0.20 191 063
RESULTS
13 0.20 120 058 0.0
A multipoint ASP analysis was performed on the entire dataset of4 0.30 216 060  0.00
292 ASPs using MAPMAKER/SIBS30). The sample was also 1.79 057 n/a n/a
stratified for analysis on the basis of whether both (162 ASPSs) or
neither (63 ASPs) members of an ASP possessed at least offe 0.25 0.50 177 065
APOE¢4 allele in order to maximize power to detect loci acting XA 0.10 0.05 1.45 0.72
epistatically or heterogeneously with respect to APOE. APOE 5 0.05 0.20 193 065

genotypes were not included in lod score calculations. This is&

computationally simple, model-free approach to two-locu®ata from the 16 peaks with an MES in either the whole sample, tad+ve
analysis which does not require the specification of unknower e4—ve subgroups are shown.

parameters such as gene frequencies, penetrances and interactions

and which allows the multilocus approach implemented iRable 2.Single pointP-values and genome-wide multipoint significance levels
MAPMAKER/SIBS to be used. The resulting multipoint lod
scores (MLS) are shown in Figutetogether with the regions Lod Single point Expected no. Observed
where exclusion analysis based o af 1.4 gave lod scores of P-value per genome scan

—2 or less. A genetic effect of sixg= 1.4 was chosen since this

. . . . All chromosomes except 19 (three analyses)

is approximately equal to that given by APOE (see below). This

could be excluded fro28% of the genome, whereaagof 2 3.6 0.00008 0.05 0
could be excluded frormB0% of the genome (data not shown). 2. 0.0005 0.5 1
The multipoint results are also summarized in Tablehich 23 0.001 0.9 2
shows data from the 16 peaks with an Mi{19n either the whole ' '
sample, the4-positive €4+ve) ore4-negative §4—ve) subgroups. 20 0.002 17 5
These regions were observed on chromosomes 1 (two peaks),12; 0.005 3.1 8
5, 6, 9 (two peaks), 10 (two peaks), 12, 13, 14, 19, 21 and X (twg 5 0015 6.9 9
peaks). Only peaks on chromosomes 1, 5, 9, 10 and 19 gave a 0.025 125 %

MLS >1 in the whole sample. The remaining peaks werel-?
observed in either threl—ve (chromosomes 1, 10, 12, 21 and X) Chromosome 19 (whole sample analysis only)

or the e4+ve (chromosomes 2, 6, 13 and 14) sib pairs only. 49 0.7

Pointwise and genome-wide significance levels calculated hy

simulation for all three samples analysed are shown in Paltle  the genome-wide significance levels for chromosomes apart from 19 were based on
can be seen that the number of observed regions (Ie ML%ﬁﬁulated genome scans in the whole saregte/e ancc4—ve subgroups.
exceeding a given lod score is greater than would be expected by

chance. Furthermore, the highest lod scores on chromosome5|§CUSS|ON

(MLS 2.67), 9 (MLS 2.38), 10 (MLS 2.27) and 19 (MLS 1.79)

fulfil Lander and Kruglyak’s definition of ‘suggestive’ in that In a genome screen of 292 sib pairs with late onset AD, we
they would be expected to occur by chance once or less gdyserved 16 loci (i.e. MLSs) with lod scoksls which exceeded
genome scarB@). Several other peaks were only marginally lesshe number expected by chance. The regions of interest occur on
significant than this, in particular those on chromosomes l¢hromosomes 1 (two peaks), 2, 5, 6, 9 (two peaks), 10 (two
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peaks), 12, 13, 14, 19, 21 and X (two peaks). The chromosorisea serum pan-protease inhibitor which has been implicated in
19 result appears attributable to the APOE locus, with marké&D because of its ability to mediate the clearance and degradation
D19S571 (15 cM distal of APOE) showing a lod score of 1.7%f BA (42,43) and because, like ApoE, itis a ligand of low density
This complies with Lander and Kruglyak’sZ) definition of lipoprotein receptor-related peptidel). Blackeret al (29) have
‘suggestive’ linkage and indicates that our study would haveecently demonstrated an association between a pentanucleotide
detected a susceptibility gene for AD in this region hadleletion in the Ssplice site of exon 18 of A2M and AD using a
association with APOE4 not already been reported. In additionsubset of the NIMH sample typed in the present study. This
we obtained a single point lod score of 2.02 (IBD 0.64) witlassociation appeared independent of APOE genotype and this
marker D19S412 (2 cM distal of the APOE locus). would appear to correlate well with our observation that linkage
Recently Pericak-Vancet al (33,34) reported the results of a to the A2M region was seen onlys#-ve families. Our data on
two-stage genome screen in late onset FAD in 54 families witthromosome 12 have been reported separ&i8)ytfut we are
multiple affected members. This first stage was carried out in 18w able to place them in the context of a full genome scan. The
of the largest families, in which DNA was available from 52maximum MLS of 1.91 in this region is less than the threshold
affected individuals. Fifteen regions of interest were followed upalculated by simulation of 2.25 for suggestive linkage according to
in a further 38 families, in which DNA was available from 89Lander and Kruglyak 32), but was the second highest score
affected individuals. Interestingly, no evidence for linkage aroundbtained in the4-ve families. None of the other candidate genes
the APOE locus was obtained despite the enrichment of markeigown in Figurd are located within the lod score peaks in our study.
in this region. On follow-up, four regions were identified showingHowever, the power of linkage methods to detect genes of small
possible or suggestive linkage on chromosomes 4, 6, 12 and 2fiect is limited 45). Indeed only PS-1 arail-antichymotrypsin
with the strongest evidence being found in the pericentromerfall within the areas of exclusion for a gene of an effect size
region of chromosome 12 (peak MLS 3.5). We found littleequivalent to or greater than APOX € 1.4).
evidence to support these findings on chromosome 12 in ourThis study is the first stage of a two-stage genome scan for late
dataset$5), a|though we did find some evidence for |inkage orpnset AD in 600 sibling pairs. The 16 areas identified will form
12p (see below). Unfortunately, Pericak-Vagtal provide no the basis of analysis in stage 2. This will comprise further analysis
information on the specific locations of the other areas of interegf these areas using the original and new markers spadedt
on chromosomes 4, 6 and 28334). We did not observe intervals within each region in a total of 600 sibling pairs with late
evidence of |inkage on chromosomes 4 or 20 but did find a Igenset Alzheimer’s disease. We have calculated that this two-stage
score of 1.4 ig4+ve ASPs on chromosome 6. However, while westudy will have a power of >0.80 to detect a locus of effect size
cannot assess whether our chromosome 6 region of interds& 1.5. Regions showing evidence of linkage at stage 2 will be
corresponds to that of Pericak-Vareteal (34), it is of interest tested further using positional cloning and candidate gene
that it contains much of the HLA region and that associatior@Pproaches. ) ) .
between AD and HLA-A2 have been reportaf)( From initial This is the largest genome scan to date in Alzheimer’s disease
findings of a separate genome survey for AD susceptibility gene¥f}d shows for the first time that this is a genetically complex
Zubenkoet al (36) also reported a region of interest on the xdisorder involving several, perhaps many, genes in addition to
Chromosome' near DXS1047. No Support for |inkage to th@POEWe ha_VF_,‘_pI’OVIded EVIdence_ C(_)nSIStentWIthal’Ole OfAZM
region was obtained in our study. Indeed, we could exclude@® & Susceptibility locus and preliminary data suggesting that
locus ofAs = 1.4 from this region. variation in the regulatory regions of APP may also influence
Figure 1 also shows the positions of a number of ‘Candidat@re@sposnlon to AD. The other areas identified in our ;tudy, in
genes’ for which evidence exists implicating their involvement iarticular those on chromosomes 1, 9 and 10, will be of
AD. Only three of these are located within the peaks identified igonsiderable interest to those trying to identify positional
this study: APOE, APP araR-macroglobulin (A2M). APOE is candidate genes using information emerging from neurobiological
the only unequivocally established genetic risk factor for latgtudies of AD.
onset AD and it is therefore reassuring that we were able to obtain
gvidence _for Iink_age at this locus withou; enri_ching for markerg) ATERIALS AND METHODS
in the region. It is well known that mutations in APP can cause
autosomal dominant early onset familial A). Direct analyses Eamilies
of the coding sequenc&®) and the promotel3{,38) have not
detected APP polymorphisms that predispose to late onset ADhe families used were selected from those collected by the
However, the Duke group, also using non-parametric linkag’dlIMH-AD Genetic Consortium4g). From within this family
methods, have provided evidence that a locus predisposing to Iatgies 230 families were selected based on the following criteria:
onset AD might reside in this region of chromosome32L Qur  at least two affected siblings with probable or definite AD
findings suggest that further attention should now be paid to tlecording to the NINCDS-ADRDA diagnostic criterd&) with
possibility of a susceptibility locus either within the regulatoryonset ages af65 years sampled and available for genotyping
regions of APP or, less parsimoniously, in a gene close by. It(diagnosis of definite AD requires neuropathological data which
therefore of interest that high levelsp# are sometimes found are usually obtained post-mortem). Within these families the
in typical late onset AD and this might indicate genetic variabilityprobable § = 417) or definitely affectech(= 79) siblings were
in APP expressior(Q). In addition, recent genetic analysis of agenotyped. In families where there were more than two affected
case of Down syndrome (DS) due to non-disjunction has firmlgiblings (definite or probable) available, all of them were used. In
implicated triplication of APP in the pathogenesis of AD in DSfamilies where there were just two affected siblings but unaffected
(41). Together with our data, these findings suggest that a fulidividuals were available, the oldest of the unaffected individuals
genetic analysis of the APP gene should now be a priority. A2Mas also sampled so that the genotype data from this unaffected



240 Human Molecular Genetics, 1999, Vol. 8 No. 2

hr
{50 Chromosome 1 LoD Chromosome 4
3 1
a ._' '._I o e e T A Sl A, ssci
1 ;"r -‘1 -. ..'.
of—"""=— .5 2
-2 . 5 T =
= 1 7 o
1 Ill i, “. ';
=2 7 = - 3 III. ,’ L)
W "\‘I i . I 1"!‘ .n’
2 ]
3 v % * v SNCA
F5.2
x 1904 | 234 1ERE Ly g iem '-IN'U i Ao _. 5 1 ‘.n"' I ﬂ."” "uz"| L ':"“ |
0 ue fsmp e qgg 0z g0 ltamgy  s1s omg s o' s sg s qpg a4 185 q5Q e e
cM chM
LOD Chromosome 2 LOD Chromosome 5
2 3
- oF ] P 2 .t i o
o= - — =
0 = e R S
‘2 1] L)
1\ " \\ : \J 1
l{ _',: Vv “ f
1(_ i ': \”1 "“ : >
/ 7 1 v
-4 ‘;l' i‘ :" ' [J'
bt -3 i
&_£'m I pase ] " 1 1= ek L) i s i i e ARTI 1470 1487
¥ 0 L a0s 5'0 2088 q3a 10b 1332 1:50 20 425 26,0'|':3ua| asn |;5 ¥ s M;maumi ¥ :‘Im |L|| =|4.53 |:m5 ! 1480 ._in .;4“ 408
0 S50 Y00 150 200
cM cM
LOD Chromosome 3 LoD Chromosome 6
B 2
K it ; L1 | N < S e
o .:_.:.__1_ s _'./Jﬂ“"\ R— i
- -
o . S “‘\“m. e s,
2 —
| o i
. \..\ K ‘. ‘i =1
% _," = '\-\ : “I
w i '
- i
v -2
BCHE
e 1 | 1309 1 Lril iy — | L | 1048 | 4T
"dﬁﬂﬂ'}us 1268 5{:: 100 1508 .":;0 1303 18704 pETe 1874 1:%00 4 hegp -SU 0 g n!gn ‘130 “1rou_ 1021 1I50 s
cM cM
Figure 1. Multipoint lod scores.
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individual could be used to check for genotyping errors. Thesmunted and the process repeated 10 000 times. The average

230 families yielded a total of 292 ASPs, in only 17 of which wer@umber of such peaks per genome scan was used to estimate th

both definitely affected. true genome-wide occurrence rate and, hence, the significance of
the lod score.

Genotyping

Lymphoblastoid cell lines were generated from peripheral bloo CKNOWLEDGEMENTS

leukocytes and DNA extracted using routine methods. Se
automated fluorescent genotyping was undertaken using the AR
Genescan/Genotyper system by comparison of the fragment Siggs ¢ i)l Cell Repository. Full sample IDs are available from
with an internal standard. All genotypes were scored blind as

O Re authors. Genotyping and data analysis were supported by a
phenotype. Genotype data from all three participating centreswa\rsant from the Ml;yé) (SK), the Alzheir¥1er’s Associggon, they

sent to a centralized database in Cardiff).( The database : : : ;

o etropolitan Life Foundation, the Mayo Foundation and the
(MEGABASE) was used to check the binning of alleles, Conv‘?rl\l}ﬂayo/leJSF Program Project Grant. A.é. is the recipient of an
allele sizes to whole numbers and to check for non—Mendella}QlH career development award (AG00634)

inheritance where possible. MEGABASE stored all relevant
genotypic/phenotypic data and produced all necessary files for
statistical analysis. ABBREVIATIONS

e samples used in this study were selected from those collected
the NIMH Alzheimer’s Genetics Initiative and were banked at

A2M, a2-macroglobulin; AD, Alzheimer’s disease; ASPs,
affected sibling pairs; APP, amyloid precursor protein; APOE,
A total of 237 microsatellite markers, obtained from Genethor@polipoprotein E; DS, Down syndrome4+ve, 4-positive;
CHLC and GDB (106 di-, 21 tri- and 110 tetranucleotides) werg4—ve g4-negative; FAD, familial autosomal dominant AD; IBD,
typed in an average of 253.8 (159-288) sib pairs. The averaigentity by descent; PS-1, presenilin 1.
distance between adjacent markers was 16.3 cM (1-40 cM) and
the average heterozygosity was 0.75 (0.39-0.89).
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