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Abstract

INTRODUCTION—We performed linkage analyses in Caribbean Hispanic families with multiple 

late-onset Alzheimer’s disease (LOAD) cases to identify regions that may contain disease 

causative variants.

METHODS—We selected 67 LOAD families to perform genome-wide linkage scan. Analysis of 

the linked regions was repeated using the entire sample of 282 families. Validated chromosomal 

regions were analyzed using joint linkage and association.

RESULTS—We identified 26 regions linked to LOAD (HLOD ≥ 3.6). We validated thirteen of 

the regions (HLOD ≥ 2.5) using the entire family sample. The strongest signal was at 11q12.3 

(rs2232932: HLODmax= 4.7, Pjoint= 6.6 × 10−6), a locus located ~2Mb upstream of the MS4A gene 

cluster. We additional identified a locus at 7p14.3 (rs10255835: HLODmax= 4.9, Pjoint= 1.2 × 

10−5), a region harboring genes associated with the nervous system (GARS, GHRHR and 

NEUROD6).

DISCUSSION—Future sequencing efforts should focus on these regions since they may harbor 

familial LOAD causative mutations.

Keywords

Caribbean Hispanic families; Late Onset Alzheimer’s Disease; linkage analysis; joint linkage and 
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INTRODUCTION

Late onset Alzheimer disease (LOAD) is a highly prevalent, progressive, neurodegenerative 

disorder characterized by a slow transition from mild memory impairment to severe 

cognitive loss. Genetic variants in the amyloid precursor protein (APP) gene [1] and 

presenilins 1 (PSEN1) [2] and 2 (PSEN2) [3, 4] genes cause early onset AD and enhance 

generation or aggregation of the amyloid β peptide [5, 6]. Simultaneously, the 

apolipoprotein E (APOE) ε4 allele decreases age of onset and increases disease 

susceptibility[7]. Several large-scale genome-wide association studies (GWAS) using dense 

SNP arrays identified additional susceptibility loci for LOAD: CLU, PICALM, CR1, BIN1, 

MS4A4A, ABCA7, CD2AP, CD33, EPHA1, HLA-DRB5/HLA-DRB1, PTK2B, SORL1, 

SLC24A4, DSG2, INPP5D, MEF2C, NME8, ZCWPW1, CELF1, FERMT2 and CASS4. As is 

the case for other complex genetic disorders, the effect sizes of these loci are small (odds 

ratios: 1.0–1.2). In large multiplex pedigrees with LOAD, targeted exome sequencing 

identified missense, nonsense and splice-site variants in APP, PSEN1, PSEN2, APOE, GRN 

and MAPT9. Other genes with rare variants (RVs) for LOAD include SORL1 [8], ADAM10 

[9], PICALM [10], PLD3 [11] and TREM2 [12]. Overall, the majority of the genes identified 

to date cluster in four pathways, namely inflammation and immune response, lipid 
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metabolism, APP generation and metabolism, and endocytosis and intracellular vesicle 

trafficking.

Much work lies ahead to determine the specific roles these loci play in LOAD and if so, 

which mutations or variants are truly causal. In addition, the identified loci only explain a 

fraction of the population attributable risk leaving additional genetic variants to be 

identified. Because large families enriched with AD cases are more likely to harbor causal 

variants, we performed parametric and non-parametric linkage analyses in 67 Caribbean 

Hispanic LOAD families with five or more affecteds genotyped individuals per family, with 

low frequency of APOE-ε4 (defined as families where less than half of its members were 

APOE-ε4 carriers), without mutations in known genes and with available genomewide 

genotype data. We subsequently evaluated the identified loci in the entire sample of 282 

LOAD families.

MATERIALS AND METHODS

Ethics statement

Study participants were recruited as part of the EFIGA Study (Estudio Familiar de 

Influencia Genetica de Alzheimer).Written informed consent for the study was obtained 

from all subjects and/or authorized representatives and study partners. EFIGA Study was 

approved by the institutional review board of the New York State Psychiatric Institute.

Study samples—A set of 67 families with 469 genotyped members was selected from a 

total sample of 282 families with 1,060 members, to perform the initial linkage analysis. The 

selection criteria was based on there being a large number of affecteds in the family (an 

average of five or more affected individuals per family), a low APOE-ε4 allele frequency 

(17.6%), absence of known mutations in PSEN1, PSEN2 or APP and the availability of 

GWAS data. The 282 additional families (591 subjects) had lower density of affecteds per 

family but similar phenotyping, low APOE-ε4 allele frequency (26%), and GWAS data 

were available. These 282 Caribbean Hispanic families were from a family-based and case-

control study of LOAD, the Estudio Familiar de Influencia Genetica de Alzheimer (EFIGA) 

[13].

EFIGA participants have been recruited since January 1998 from clinics in the Dominican 

Republic and Puerto Rico, as well as the Alzheimer Disease Research Center Memory 

Disorders Clinic at Columbia University in New York City. Participants are followed-up 

every 18 months. Each participant completed a standardized assessment at approximately 18 

month intervals, including medical history, physical and neurological examination and an 

extensive neuropsychological battery for evaluation of cognitive impairment [14]. This 

battery measured cognitive function in key domains affected by aging and dementia, 

including memory, visuospatial ability, psychomotor speed, and executive function. The 

measures include the Selective Reminding Test [15], the Benton Visual Retention Test 

recognition and matching trials [16], the Rosen Drawing Test [17], the Boston Naming Test 

[18], the Controlled Oral Word Association Test [19], the Category Fluency Test [20], the 

Color Trails Test [21], the Similarities subtest from the Wechsler Adult Intelligence Scale 

[22] and the orientation items from the Mini-Mental State Examination [23]. Brief tests of 
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writing and reading comprehension, and formal measures of reading recognition were 

administered including the Reading subtest of the Wide Range Achievement Test 3 [24], the 

Letter-Word Identification Subtest of the Woodcock-Johnson Spanish Psycho-Educational 

Battery [25] and the Word Accentuation Test [26]. Functional status was assessed using the 

Disability and Functional Limitation Instrument [27] which contains self- and observer 

ratings in the following areas: Instrumental activities, such as using the telephone, handling 

money, and completing chores; personal self-maintenance activities, such as bathing, 

dressing, using the toilet; perceived difficulty with memory, language, and visuospatial 

function, mobility, activities and social participation. The Clinical Dementia Rating Scale 

(CDR) [28] was completed. The diagnosis of LOAD was made at a consensus conference of 

physicians and neuropsychologists based on guidelines from the National Institute of 

Neurological and Communicative Disorders and Stroke–the Alzheimer Disease and Related 

Disorders Association (NINDS-ADRDA) [29].

Genotyping and quality control procedures—Genome-wide genotype data were 

obtained using the Illumina Human Hap 650k or Illumina 1M arrays, therefore analysis was 

performed using the subset of SNPs that were common to the different genetic platforms 

(583,002 SNPs). Single-nucleotide polymorphisms with minor allele frequencies (MAFs) 

less than 0.01, call rates less than 98%, or in which were not in Hardy-Weinberg equilibrium 

(P < 10-6 in controls) were excluded. Participants whose reported sex differed from the sex 

assignment determined by analysis of the X-chromosome SNPs using PLINK version 1.07 

(http://pngu.mgh.harvard.edu/~purcell/plink/index.shtml) were excluded. Reported 

relationships among individuals within a family were confirmed by pairwise genome-wide 

estimates of IBD allele sharing. All discrepancies were reviewed with the available clinical 

and pedigree data to determine the most likely relationship consistent with IBD estimates.

Power analysis—To estimate the power of the set of 67 Hispanics families in detecting 

linkage, we performed simulations of genotypes for 100 replicates using SLINK [30, 31]. 

We assumed age dependent penetrance models (dominant and recessive) as described in the 

manuscript and a recombination fraction ranging 0.0–0.45. We considered the minor allele 

frequencies (MAFs) of the SNPs identified as genome-wide linked to LOAD in the 67 

Hispanics families as described in Table 3. The MAFs ranged from 10% to 48% with an 

average MAF of 27%.

Statistical Analyses—Prior to the genome scan, we used independent SNPs markers 

(correlation coefficient R2=1) and with minimum allele frequencies equal or greater than 

1% to examine for relationships among family members in the 67 families dataset (6,043 

SNPs) and the entire set of families (5,865 SNPs) using the program PREST [32]. Based on 

the results, we corrected the relationships (e.g., full sibling to half-sibling), selected one 

from each monozygotic twin, and excluded individuals who were determined to be 

biologically unrelated. We then performed parametric two-point affected-only and two-point 

age-penetrance models for LOAD in the 67 families dataset using MERLIN (http://

www.sph.umich.edu/csg/abecasis/Merlin/) setting the disease allele frequency at 0.001 and 

with a penetrance function of (0.01, 0.01, 0.90), and (0.01, 0.90, 0.90) for recessive and 

dominant models. A heterogeneity model for linkage analysis was applied to account for 
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possible genetic heterogeneity across families since causal genes may differ among families. 

Subsequently, we repeated these analyses in the entire dataset of 282 families for regions 

with genome-wide significant evidence of linkage (HLOD =3.6) [33]. To narrow down the 

candidate regions, we selected SNPs showing a suggestive evidence of linkage (HLODs ≥ 

2.5) [33] and performed joint linkage and association analyses using PSEUDOMARKER 

[34]. PSEUDOMARKER uses parametric inheritance models and exact likelihood 

computations to evaluate the evidence for linkage, LD, neither, or both between a putative 

trait locus and a set of genotyped markers providing a framework for testing hypotheses 

about linkage and LD. It yields statistics that are stochastically equivalent to several popular 

model-free methods if applied to simple family structures, for instance mother-father-child 

triads, case-control samples, or affected sib-pairs. PSEUDOMARKER, however, has 

substantial advantages over the simpler nonparametric methods when analyzing more 

complex family structures such as the present sample of multigenerational Caribbean 

Hispanic families. Adjustment for multiple testing in the joint linkage and association 

analysis was carried out using Bonferroni correction. The threshold for significance was 

established as adjusted P =0.003.

Brain expression eQTL analyses—To determine brain expression profiles of the 

identified candidate LOAD genes within the linkage regions, we used the publically 

available data from the United Kingdom Brain Expression Consortium (UKBEC) repository 

which is based on tissue from 12 brain regions from 134 individuals free of 

neurodegenerative disorders analyzed using the Affymetrix Exon 1.0 ST Array (http://

www.braineac.org/). The datasets used contain the information for SNPs and indels found 

within 1Mb of the transcription start site of the transcript (total span of 2Mb). Markers have 

been restricted to those with good imputation quality (Rsq > 0.5) and minor allele frequency 

(MAF) ≥ 5%.

In silico gene functional interaction network—We also constructed a composite 

gene-gene functional interaction network to further investigate the relationships between 

reported LOAD susceptibility genes in GWAS meta-analysis [35] and the candidate genes 

we have identified. We used the publically available bioinformatic web-interface 

GeneMANIA. This interface uses a linear regression-based algorithm to calculate a 

composite functional association network from multiple networks derived from different 

proteomic or genomic data sources.

While several hundred genes under each of the linkage peaks were possible candidates for 

eQTL and functional networks analyses, we selected those only genes that were expressed in 

brain, highly conserved and that represented biologically plausible LOAD candidate genes.

RESULTS

Supplemental Figure 1 summarizes the analysis pipeline.

Results from quality control metrics excluded one subject on the basis of pedigree 

relationships discrepancies and 5,568 SNPs on the basis of call rate and deviations from 

Hardy-Weinberg equilibrium.
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Characteristics of the family cohort are shown in Table 1. In the 67 families’ dataset, the 

mean age at onset in LOAD cases was 74 ± 10, the age of unaffecteds at last evaluation was 

68 ± 10, and the APOE-ε4 allele frequency was 17.6%. Note that the APOE-ε4 allele 

frequency for cases in the original 67 families’ dataset was low because we selected these 

families where less than half of the members were APOE-ε4 carriers. In the 215 remaining 

families, the mean age at LOAD onset was 74 ± 9, the age of unaffecteds at last evaluation 

was 70 ± 8 and the APOE-ε4 allele frequency was 26.1%.

For both dominant and recessive models, simulation results indicated that, with the linked 

SNP minor allele frequency of 10%, there was >80% power to detect LOD scores exceeding 

the Lander and Kruglyak threshold for genome-wide linkage (HLOD ≥ 3.6) [33]. If the 

minor allele frequency is ≥27%, the power to detect linkage increased to 100% 

(Supplemental Table 1).

In the initial phase, we used two-point affected-only or two-point age-dependent penetrance 

models. We identified 26 linkage regions with HLOD scores exceeding 3.6 (Table 2). 

Because the 67 families’ dataset was selected for clustering of affected subjects who were 

predominantly APOE-ε4 allele negative, we did not observe linkage at the APOE region of 

19q13.2. The highest linkage peak (HLOD= 5.0) occurs at SNP marker rs12589681 on 

chromosome 14q12 (27cM, 33Mb) under the age dependent penetrance model. The 14q12 

locus was located ~40Mb upstream of PSEN1 (These families screened negative for PSEN1 

mutations). The linked SNP rs12589681 is an intronic variant of AKAP6 gene, an ion 

channel that binds to protein kinase A and anchors it to the nuclear membrane or 

sarcoplasmic reticulum. Interestingly, a recent report has identified two rare variants in the 

AKAP9 gene, in the same gene family and similar function to AKAP6 that significantly 

increase the risk of Alzheimer ’s disease in African-Americans [36].

To narrow down the genomic regions putatively containing causative variants, we evaluated 

the SNPs found in the 67 families’ dataset by using the entire sample of 282 LOAD families. 

Thirteen of the identified chromosomal regions had 16 SNPs with evidence of significant 

linkage to LOAD in the 67 families’ dataset, and were also suggestive for linkage (HLOD= 

2.5) in the entire sample of families (Table 3). To refine the signals at these thirteen loci, we 

also conducted additional joint linkage and association analyses (Table 4). We identified 

five linkage regions where SNPs showed significant association with LOAD: 11q12.3, 

7p14.3, 10p13, 3q13.31 and 2p23.3. The strongest signal corresponds to chromosome 

11q12.3. In the 67 families’ dataset, rs2232932 yielded a maximum HLOD of 3.6 under the 

age dependent penetrance model. When assessed in the entire sample of families, the 

maximum HLOD was 4.7 under the age dependent penetrance model. Results from the joint 

linkage and association analysis demonstrated that under the recessive model, rs2232932 is 

significantly associated with LOAD (Pjoint=6.6 × 10−6) after correction for multiple testing. 

The ~2Mb region encompassing the linkage peak harbors among other genes, the 

membrane-spanning 4A (MS4A) cluster gene, previously reported as associated with 

susceptibility to AD [37].
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Two-point linkage analysis results for the 215 and 282 families are provided in 

Supplemental Figure 2. Multipoint linkage results for the three sets of families (67, 215 and 

282 families) are provided in Suppl. Figures 3, 4 and 5.

In the published IGAP meta-analysis of GWAS LOAD susceptibility genes [35], SNP 

rs983392 at MS4A6A was reported as significantly associated with LOAD. Because this 

SNP is not part of our genotyping platform, we selected a subset of 5 SNPs in strong linkage 

disequilibrium (R2 ≥ 0.8) with rs983392 and carried out joint linkage and association 

analysis in the entire set of 282 families. Our results showed that none of the SNP markers 

appear to be associated with LOAD, suggesting that there may be allelic heterogeneity at 

this locus between Caucasian subjects-source of IGAP and Hispanics.

We additionally investigated the SNPs identified in the joint linkage and association analysis 

in the IGAP meta-analysis GWAS [35] (Supplemental Table 2) and found that the strongest 

IGAP association corresponds to SNP rs218097 in 7p14.3 (P-value =0.002).

The 7p14.3 region also yielded strong linkage and association. In the 67 families’ dataset, 

rs10255835 yielded a maximum HLOD of 4.7 under the age dependent penetrance model. 

When assessed in the entire sample of families, the maximum HLOD was 4.9 under the age 

dependent penetrance model. Results from the joint linkage and association analysis 

demonstrated that under the recessive model, rs10255835 is significantly associated with 

LOAD (Pjoint=1.2 × 10−5) after correction for multiple testing. The SNP is located within a 

region that harbors several biological candidate genes. The SNP is located ~12Kb upstream 

of GHRHR the growth hormone releasing receptor, ~332Kb downstream of the transcription 

factor NEUROD6 and ~400Kb downstream of GARS, a gene which encodes a glycyl-tRNA 

synthetase.

On chromosome 10p13, an intronic variant of FMRD4A gene, SNP rs12360009, yielded 

significant linkage and association (HLODmax=4.3 in the 67 families’ dataset, 

HLODmax=4.0 in the entire family sample, both scores under the age dependent penetrance 

model, and Pjoint=7.9 × 10−5 under the dominant model). A genome-wide haplotype 

association study has reported FMRD4A gene as a risk locus for Alzheimer's disease [38].

SNP rs6438213 on 3q13.31 appeared significantly linked and associated with AD, with a 

HLODmax of 4.9 in the entire sample of 282 families under the age-dependent penetrance 

model and Pjoint=2.7 × 10−4 under the dominant model. The SNP is located in ZBTB20 gene, 

zinc finger gene that in mice is expressed in newborn pyramidal neurons of the hippocampus 

[39].

Within the 2p23.3 region, rs4665809 yielded a HLODmax=3.6 in the 67 families’ dataset, 

HLODmax=3.9 in the entire family sample (both scores under the age dependent penetrance 

model) and Pjoint=2.8 × 10−4 under the recessive model. The locus is not near a known gene, 

however, it is located ~5Kb upstream of RAB10 gene, a member of the RAS superfamily of 

small GTPases, involved in axon development in hippocampal neurons Interestingly, 

another cargo protein, RAB7A, showed significant evidence of association with AD [40], 

suggesting a direct link between the activity of the retromer complex and the pathogenesis 

of AD.
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Results from eQTL analysis using the Brain Almanac repository (Supplemental Table 3) 

indicated that our LOAD candidate genes displayed brain region-specific expression 

patterns. As shown in Supplemental Figure 6, NEUROD6 gene appears to be highly 

expressed in hippocampus while the expression level of SLC30A3 gene is signifincalty 

higher in temporal cortex. For each of the genes, the most significant fold change in brain 

expression between brain regions is also shown, i.e. hippocampal expression of NEUROD6 

is 11.2 fold higher than its expression in the thalamus (p=1 x10−60).

The functional network analysis using GeneMANIA confirmed the functional association 

between our candidate genes and several susceptibility LOAD genes (Supplemental Table 4, 

Supplemental Figure 7).

DISCUSSION

In a subset of multiplex Caribbean Hispanic families multiply affected by LOAD, we 

identified four regions with HLOD scores=3.6. In testing regions in a larger dataset of 

Caribbean Hispanics families we were able to generalize (HLOD =2.5) the finding and 

identify significant evidence for association (Pjoint =0.003).

The selection of the enriched families as the initial cohort for linkage analysis confirmed 

their utility to identify genetic variants. As the alpha values demonstrated, more than 80% of 

the families in the 67 families’ dataset were linked to the identified loci, while the remaining 

set of 215 families appeared to be more heterogeneous with the proportion of families linked 

to the locus ranging from 14% to 51 % (Supplemental Table 5), except for SNP at 2p23.3 

that in both families’ datasets reaches alpha values of 100%.

The strongest signal corresponds to SNP rs2232932 at chromosome 11q12.3 with a 

HLODmax=4.7 in the entire sample of 282 families and strong evidence for joint linkage 

and association (Pjoint= 6.6 x10−6). The SNP is located 1.5Mb upstream of MS4A4E gene. 

An increased risk of developing Alzheimer’s Disease has previously been found to be 

associated with several variants within membrane-spanning 4-domains subfamily A (MS4A) 

gene cluster[37]. As cell membrane proteins, MS4A family members are found to participate 

in the regulation of calcium signaling which have been widely discussed in 

neurodegeneration and AD[41]. An important role in immunity has already been identified 

for several members of this cluster indicating the possible involvement of MS4A gene cluster 

in AD pathogenesis [42].

SNP rs10255835 at 7p14.3 (HLODmax=4.9 in the entire sample of 282 LOAD families and 

Pjoint=1.2 × 10−5) lies in a region harboring several genes of biological relevance. 

Approximately 12Kb upstream is the gene encoding the growth hormone releasing receptor, 

GHRHR. It has been reported that neuroendocrine mechanisms play a role in LOAD 

development [43]. The region also harbors helix-loop transcription factor NEUROD6 that is 

involved in the development and differentiation of the nervous system. It has been 

previously reported that in human AD brains, NEUROD6 expression levels were 

significantly altered, i.e., significantly downregulated in hippocampus [44]. Finally, the 

7p14 region encompasses GARS gene, a glycyl-tRNA synthetase that catalyzes the 
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attachment of glycine to tRNA. Several GARS mutations have been identified in individuals 

with distal hereditary motor neuropathy type V and in individuals with a form of Charcot-

Marie-Tooth disease [45]. A reduction in glycyl-tRNA synthetase activity may impair the 

ability of axons to transmit nerve impulses. Whether these genes are involved in LOAD or 

simply lie in a region that contains another, as yet unidentified gene remains to be 

determined. Remarkably, 7p14.1 region has also been reported in a meta-analysis of a 

sample of 2,206 LOAD affected individuals from Caucasian and Caribbean Hispanic 

ancestry families [46].

We replicated the association of FMRD4A gene on 10p13 and AD, intronic SNP rs12360009 

yielded strong evidence of both linkage and association (Pjoint=7.9 x10−5). Genome-wide 

haplotype analysis identified FMRD4A as consistently associated with AD risk in seven 

independent European populations. Interestingly, this locus is included in the large AD 

linkage region regularly identified on chromosome 10 [38]. FRMD4A belongs to the FERM 

super family, which includes ubiquitous components of the cytocortex involved in cell 

structure, transport and signaling functions. FRMD4A gene product interacts with Arf6 

which was recently reported to control APP processing[47] suggesting that FRMD4A could 

also be implied in this metabolism. This hypothesis is sustained by the observation of an 

association of the FRMD4A locus with plasma Aβ1–42/Aβ1–40, at once reinforcing the 

plausibility of the association of this gene with AD risk and its potential implication in a 

subtle control of the APP metabolism.

The SNP rs6438213 at 3q13.31 is an intronic variant of ZBTB20 gene, a zinc finger 

transcription factor that has been associated with hippocampal function. In mice, ZBTB20 is 

expressed in newborn pyramidal neurons of the hippocampus and it is implicated in the 

regulation of cortical neurogenesis [39]. Gene expression studies in human brain samples 

showed that is highly expressed in the hippocampal, cerebellum and white matter regions of 

the brain and suggest that ZBTB20 plays an essential role in the development and 

regionalization of the human hippocampus [48].

SNP rs4665809 within the 2p23.3 region maps ~ 5Kb upstream of RAB10 gene, a member 

of to the RAS superfamily of small GTPases. They GTPases are key regulators of 

intracellular membrane trafficking, from the formation of transport vesicles to their fusion 

with membranes. In neurons, it is involved in axonogenesis through regulation of vesicular 

membrane trafficking toward the axonal plasma membrane. The 2p23.3 region also harbors 

SLC30A3 gene, a synaptic vesicle transporter responsible for neuronal export of zinc into the 

synaptic space. In a transgenic mouse model of AD, a dramatic reduction of cerebral 

amyloid angiopathy occurs after targeted disruption of SLC30A3 [49]. It has also been 

recently reported that its activity is critical for synaptic targeting of Aβ oligomers [50]. 

Several previous genome screens identified 2p23–24 as candidate region contributing to 

LOAD risk [51, 52].

Researchers in accompanying study in non-Hispanic Caucasian LOAD families found 

strong evidence for linkage and association in 11q12.3 locus. To further investigate the 

region in the 67 families dataset, we run parametric multipoint analysis in the 4Mb/2cM 

region encompassing the linkage peak for a 1-cM grid using MERLIN. Multipoint HLOD 
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scores were lower than the two-point scores and the low alpha values suggested high genetic 

heterogeneity. When family specific LOD scores were computed within each of the regions, 

the largest scores were achieved by a small number of families segregating with these loci.

Linkage analysis of the 67 families under the age-dependent penetrance model (M2), yielded 

seven loci out of the total thirteen that showed higher HLOD scores after the addition of the 

215 family set, i.e., the HLOD for SNP rs2232932 at 11q12.3 increased from 3.6 to 4.7. If 

we consider the affected only analysis model (M0), two of the thirteen loci increased their 

evidence for linkage after the addition of the 215 families. Our findings suggest that the 

linkage evidence at these loci is mostly driven by the initial set of 67 families and the 

addition of 215 families supports the evidence of linkage in some of these loci. As 

previously reported, methods were LOD score is maximized over disease model are more 

powerful compared with affecteds-only methods [53], therefore is expected that 

confirmation of the linkage signals is stronger under M2 model.

The decrease in HLOD scores observed for some of the linkage signals after the addition of 

the 215 families suggest allelic/locus heterogeneity in these families. The main source of 

heterogeneity is our selection criteria for the families. The initial 67 Hispanics families were 

selected because they had multiple LOAD cases, did not carry known mutations in 

established LOAD genes and had low allele frequency of APOE-ε4. As previously reported, 

ascertainment of highly selected extended families potentially increases homogeneity and 

therefore improve the power to detect linkage [54]. Moreover, these families contain 

significant more linkage information. Previous studies have demonstrated that small sample 

sizes can identify genomic regions of interest [55]. As an example, the genetic analysis that 

demonstrated LOAD linkage to chromosome 19, and subsequently permitted the 

identification of APOE locus as a major susceptibility locus, was conducted using only 32 

pedigrees [56]. These criteria were not applied to the additional set of 215 families, these 

families were selected on the basis of at least two affected individuals with genetic data 

available.

In brief, sources of heterogeneity are: i) the size of the families (the average pedigree size in 

the 67 families was 11 individuals versus six in the 215 families), ii) the number of affected 

individuals per family (the average number of affected members in the 67 families was five 

with AD versus two with AD in the 215 families) (Table 1) and iii) the selection was also 

not based on APOE-ε4 (the frequency of APOE-ε4 allele was 18% in the 67 families versus 

a frequency of 26% in the 215 families) (Table 1).

Analysis of SNPs in strong linkage disequilibrium with IGAP LOAD susceptibility loci 

previously reported at MS4A4E suggested allelic heterogeneity for this locus when 

Caucasian and Caribbean Hispanic populations were compared. However, several of the 

identified SNPs in the other chromosomal regions show nominally significant results, 

suggesting that some of the identified loci may be generalized to Caucasian populations.

We observed suggestive, but not definitive region-specific patterns of brain expression of 

the LOAD candidate genes when analyzing publically available eQTL datasets in human 

Barral et al. Page 10

Alzheimers Dement. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



brain. Moreover, in silico analysis of potential functional networks further support their 

interaction with several reported susceptibility LOAD genes.

Taken together, these linkage analyses in multiplex Caribbean Hispanic families identified 

several reported and novel regions with suggestive linkage to LOAD that contain candidate 

genes, some of which are biologically highly plausible. However, SNPs that influence cis-

acting regulatory elements often do not influence the expression of the closest gene, and the 

true LOAD-related gene may be several genes up or downstream. Follow-up sequence 

analyses in these families should help to identify rare causative sequence variants in these 

regions shared within or across sequenced families.

The 67 families we described and analyzed in this manuscript are part of the national 

Alzheimer’s Disease Sequencing Project (ADSP). Along with the non-Hispanic White 

families reported in the companion paper (Kunkle et al), they are undergoing whole-genome 

sequencing (WGS). The linkage regions identified in this manuscript will be prioritized in 

the ADSP analysis, that is, the WGS data will be used to identify exonic and regulatory 

variants under these linkage peaks and subsequently investigate the role of these rare 

variants in the susceptibility to LOAD. To further identify causative/protective variants 

segregating with LOAD in these linkage regions, additional analysis of the WGS data will 

be carry out as part of the ADSP project, i.e., joint linkage and association analyses, gene 

based analyses.

Alzheimer’s Disease Sequencing Project (ADSP) data sharing

All data from the analyses in this manuscript, including quality control documentation, 

GWAS array data and phenotype data for each family, and linkage analyses results, is 

available for download at The National Institute on Aging Genetics of Alzheimer’s Disease 

Data Storage Site’s ADSP website (https://www.niagads.org/adsp/content/home). 

Applicants must submit a data access request to dbGaP. Applications are reviewed by the 

ADSP Data Access Committee (DAC) and the NIAGADS Data Use Committee (DUC). 

ADSP phenotype and sequence data are made available to the research community at large 

in keeping with the NIH Genomics Data Sharing Policy http://gds.nih.gov/. NIA has 

established the National Institute on Aging Genetics of Alzheimer's Disease Data Storage 

Site (NIAGADS) as a national genetics data repository in order to facilitate access by 

qualified investigators to genotypic and phenotypic data for the study of the genetics of late-

onset Alzheimer's disease. NIAGADS is working in partnership with dbGaP (ADSP at 

dbGaP) to provide ADSP data to the research community. Data can be requested either from 

dbGaP or NIAGADS. Instructions for application for ADSP data and an explanation of the 

review process can be found at: ADSP at dbGaP and NIAGADS ADSP Application 

Instructions.

The ADSP has in place a memorandum of understanding https://www.niagads.org/sites/all/

public_files/ADSPdocs/ADSP-MOU.pdf. In the spirit of the clear benefit that ensues from 

converting such data sets into community resources as rapidly as possible, and in keeping 

with community expectations for the use of unpublished genome sequence data, it is 

expected for the first phase of the study called the Discovery Phase, that users of the data 

will withhold publication until the producers of the data have published their findings. 
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ADSP participants will publish their data in an expeditious fashion in at least one major 

paper reporting the results of the ADSP to be jointly submitted by all of the members.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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RESEARCH CONTEXT

Genome-wide methods have led to the identification of risk loci for Late-Onset 

Alzheimer’s disease (LOAD). However, the loci explain a small fraction of LOAD 

heritability and the causal variants remain unidentified. Linkage analysis of large 

pedigrees with multiple affecteds is a powerful approach to identify genomic regions 

containing rare variants. Genome-wide scan of 67 Caribbean Hispanic families with 

multiple LOAD cases selected from an overall sample of 282 families identified 26 

chromosomal regions with significant evidence of linkage. Thirteen of the regions were 

validated in the overall sample. Joint linkage and association identified locus on 11q12.3 

located ~2Mb upstream of MS4A gene, a LOAD susceptibility gene (rs2232932, Pjoint= 

6.6 × 10−6). Variants in 7p14.3 were associated with LOAD (rs10255835, Pjoint= 1.2 × 

10−5), a region harboring genes implicated in development and differentiation of nervous 

system. Future sequencing efforts should focus on regions harboring rare variants 

contributing to familial LOAD risk.
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Figure 1. 
Plot of the two-point linkage analysis in the 67 Caribbean Hispanics LOAD families. 1A) 

HLODs under the affected only model; 1B) HLODs under the age dependent penetrance 

model.
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Table 1

Late Onset Caribbean Hispanics family sample characteristics

67 Families Additional 215 Families

Families, n 67 215

Subjects, n 469 591

Affection status, n (%)

 Affected 354 (75.5) 434(73.4)

 Average (SD) of affected individuals per family 5.1 (1.8) 2.1 (0.8)

 Unaffected 114 (24.3) 156(26.4)

 Average (SD) of unaffected individuals per family 2.2 (1.5) 1.5 (0.9)

 Unknown 1 (0.2) 1(0.2)

Females, n(%) 276 (5.9) 385(65.1)

Age at onset of affecteds, mean (SD) 74 (9.6) 74.1(9.5)

Age at last examination of unaffecteds, mean (SD) 68 (9.7) 69.6(8.3)

APOE allele frequency, n (%)

ε4 165 (17.6) 309(26.1)

ε3 735 (78.4) 821(69.5)

ε2 38 (4.0) 52(4.4)
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