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Abstract

Introduction: A recent study found a significant increase of ABCA7 loss-of-function variants in Alzheimer’s disease
(AD) cases compared to controls. Some variants were located on noncoding regions, but it was demonstrated that
they affect splicing. Here, we try to replicate the association between AD risk and ABCA7 loss-of-function variants at
both the single-variant and gene level in a large and well-characterized European American dataset.

Methods: We genotyped the GWAS common variant and four rare variants previously reported for ABCA7 in 3476
European–Americans.

Results: We were not able to replicate the association at the single-variant level, likely due to a lower effect size on
the European American population which led to limited statistical power. However, we did replicate the association at
the gene level; we found a significant enrichment of ABCA7 loss-of-function variants in AD cases compared to
controls (P = 0.0388; odds ratio =1.54). We also confirmed that the association of the loss-of-function variants
is independent of the previously reported genome-wide association study signal.

Conclusions: Although the effect size for the association of ABCA7 loss-of-function variants with AD risk is lower in
our study (odds ratio = 1.54) compared to the original report (odds ratio = 2.2), the replication of the findings of the
original report provides a stronger foundation for future functional applications. The data indicate that different
independent signals that modify risk for complex traits may exist on the same locus. Additionally, our results
suggest that replication of rare-variant studies should be performed at the gene level rather than focusing on a
single variant.

Introduction
A recent study found that loss-of-function variants in
ABCA7 (ATP-binding cassette transporter A7) confer
greater risk for Alzheimer’s disease (AD) [1]. Steinberg
et al. [1] analyzed sequence, genome-wide association
study (GWAS), and linkage data from 3419 individuals
with AD and 151,805 controls from Iceland. Gene-
based analyses, including nonsense, missense, frame-
shift splice-site variants and canonical splice-site variants

(‘loss-of-function’), identified ABCA7 as the most signifi-
cant gene (odds ratio (OR) = 2.12, P = 2.2 × 10–13) for AD.
This association was mainly driven by a single splice-site
variant, rs200538373 (OR = 4.47, P = 3.4 × 10–7), although
other coding variants and splice variants were also found.
This association was replicated at the gene level by
genotyping the loss-of-function variants in more than
6500 AD cases and controls from four independent
datasets (OR = 1.73, P = 0.0056). Interestingly, the OR
for the variant (rs200538373) that led the association
on the discovery series was in the opposite direction
in the replication dataset (OR = 0.93). Additionally,
none of these loss-of-function variants were in linkage
disequilibrium (LD) with the ABCA7 common variant
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identified by GWAS [2], suggesting that there are
multiple and independent mechanisms throughout the
ABCA7 region that increase risk for AD. Based on
these results, we tried to replicate the association of
the ABCA7 loss-of-function variants in a large cohort
of European–Americans.

Methods
A total of 1776 AD cases and 1700 controls were
selected from the Alzheimer's Disease Neuroimaging
Initiative (ADNI), the Charles F. and Joanne Knight
Alzheimer's Disease Research Center (Knight-ADRC)
and the National Institute on Aging Genetics Initiative
for Late-Onset Alzheimer’s Disease (NIALOAD) [3, 4].
The Institutional Review Board at the Washington
University School of Medicine in Saint Louis approved
the study. Research was carried out in accordance with
the approved protocol. Written informed consent was
obtained from participants and their family members by
the Clinical Core of the Knight-ADRC. The approval
number for the Knight-ADRC Genetics Core family
studies is 93-0006.
In the original study, Steinberg et al. [1] genotyped the

ABCA7 variants on 6681 European non-Icelandic
individuals and only four variants were polymorphic
(Supplementary Table 5 from Steinberg et al. [1]). There-
fore, we decided to genotype the variants that were found
to be polymorphic on the non-Icelandic population
together with the GWAS common variant. The ABCA7
GWAS common variant (rs4147929) as well as the loss-
of-function variants (p.Glu709Alafs*86, p.Leu1403Argfs*7,
rs200538373, and rs113809142) reported by Steinberg et
al. [1] were genotyped in our dataset using competitive
allele-specific polymerase chain reaction KASPar genotyp-
ing technologies as described previously [3, 4].
Allelic frequencies, Hardy-Weinberg equilibrium and

single-variant association tests were performed with
PLINK-1.9 [5]. For gene level analysis, burden analyses
were performed using a combined multivariate and
collapsing (CMC) test [6]. Age, gender, and principal
component factors (PCs) were included in all association
tests as covariates.

Results and discussion
In our dataset, the common variant rs4147929[A] was
significantly associated with AD risk (Table 1; OR = 1.162,
P = 0.022), suggesting that we have enough power to repli-
cate known associations for common variants. All the
genotyped loss-of-function variants were polymorphic in
our dataset with similar frequencies to those reported in
the European non-Icelandic datasets. As initially reported,
none of the genotyped variants were in LD with the com-
mon variant rs4147929, allowing for independent analysis.
In our dataset, all rare variants were more frequent in AD

cases than in controls with an OR ranging from 1.2 to 1.7;
however, none of these values were statistically significant
on their own (Table 1; P > 0.1).
Although we had statistical power to replicate the

association of rs113809142 with AD risk based on the
effect size reported in the Icelandic population (OR = 4.42,
power = 0.887), we did not have enough power to replicate
the single-variant analyses based on the minor allele
frequency (MAF) and effect sizes reported on the
European non-Icelandic dataset. There is some debate
concerning what is the best approach to replicate the asso-
ciation of rare variants with complex traits [7–11]. It is
clear that the MAF for these low-frequency variants varies
widely, not only among populations, but also within popu-
lations [10–12]. If the cases and controls are not very well
matched for local genetic background, the study can pro-
duce false-positive or false-negative results [7, 11, 13].
Additionally, it is possible that a specific variant is not
found, or found in an extremely low frequency in a spe-
cific population; as with the case of the TREM2 R47H
variant in Asian [14, 15] or African–American popula-
tions. Although the association of the R47H variant with
AD risk has been widely replicated in European–Ameri-
cans, no significant association is found in Asian or Afri-
can–American populations, because the MAF for this
variant (R47H) is extremely low. However, other variants
in the same gene could increase risk for diseases in these
populations. Steinberg et al. [1] failed to replicate the

Table 1 Association of ABCA7 variants with Alzheimer’s disease in
studied groups based on Fisher’s association test, including
age, gender, and PC as covariates. Gene-based analysis was
conducted with CMC collapsing method

rsID/positiona MAF OR P

Cases Controls (95 % CI)

rs4147929 0.179 0.1581 1.162 0.022

(GWAS SNP) (1.02–1.31)

19:998507a 0.006 0.0037 1.735 0.121

p.Glu709AlafsX86 (0.54–3.04)

19:1006907a 0.003 0.0027 1.285 0.569

p.Leu1403ArgfsX7 (0.76–3.21)

rs113809142 0.002 0.0012 1.695 0.451

c.4416+2T>G (0.34–5.91)

rs200538373 0.009 0.0076 1.231 0.476

c.5570+5G>C (0.68–2.61)

Loss-of-function 0.016 0.0107 1.549 0.038

(All low frequency variants) (1.02–2.34)
aNCBI Build 36
MAF
Values shown in bold are significant at the P < 0.05 level
CI Confidence interval, CMC Combined multivariate and collapsing,
GWAS Genome-wide association study, MAF Minor allele frequency,
OR Odds ratio, PC Principal component factors, SNP Single
Nucleotide Polymorphism
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association of the rs113809142 in the European non-
Icelandic population, but they were able to replicate the
association at the gene level. These results support the
notion that different (local) populations have varying
genetic make-ups, and therefore single-variant analyses
may not be the best approach for replicating these studies.
This hypothesis is also supported by recent studies from Jin
et al. [3, 15] in which deep resequencing of TREM2 was
performed on European–Americans and African–Ameri-
cans; different variants were found in each population, and
the variants in common presented very different MAFs and
ORs. However, in both cases, the gene-based analyses sup-
ported the association of TREM2 with AD risk.
For this reason, we decided to perform a gene-based

analysis for all the reported polymorphic ABCA7 loss-
of-function variants. Since all variants presented the
same direction of effect, we performed a CMC test.
In our dataset, we found a significant enrichment of
ABCA7 loss-of-function variants in AD cases com-
pared to controls (P = 0.0388; OR = 1.54). Therefore,
despite none of the individual loss-of-function vari-
ants reported a significant association with ABCA7 in
this study, we were able to replicate two independent
signals of the correlation of the ABCA7 gene with
AD: the common variant and the aggregation of the
loss-of-function variants.
The point estimate for the OR in this study for the

gene-based analysis is slightly lower than the reported
OR for the Icelandic population (OR = 2.12) or the
European non-Icelandic replication datasets (OR = 1.73),
although the 95 % confidence interval in this study
(1.02–2.34) includes both the Icelandic OR and the
European non-Icelandic OR published by Steinberg et al.
[1]. The current findings and those of the European
non-Icelandic population support a possible "winner's
curse" for the Icelandic discovery. Our sample size was
smaller than both of the discovery series. Additionally, a
proper gene-based replication would entail resequencing
the candidate region to identify novel functional vari-
ants, and not just genotyping the reported variants;
therefore, the real OR for the ABCA7 loss-of-function
variants remains to be determined. Despite these limita-
tions, we were able to replicate the original report. Our
data also indicate that the gene-based association of
these loss-of-function variants is independent of the
GWAS variant, and that the aggregate effect of these
variants is larger than that of the common variant alone.
Our study validates the role of noncoding loss-of-

function ABCA7 variants in AD risk. Other population-
specific independent variants with similar loss-of-function
effects may contribute to AD risk or other complex traits.
Supporting this hypothesis, a recent study has reported on
an additional intronic low-frequency variant of ABCA7
(rs78117248; OR = 2.07, P = 0.0016) that increases risk for

AD, also independently of the common variant. Together,
these results suggest that different and independent
variants modify risk for complex diseases by different
mechanisms existing on the same locus [16, 17]. Other
genes will also harbor rare variants increasing risk for AD,
independently of the GWAS hits [17].

Conclusions
In summary, our study replicates the association of
ABCA7 loss-of-function variants with AD risk, and high-
lights the necessity of performing gene-based, rather
than single-variant analyses to replicate the association
in this type of studies. Our study also confirms that
there is high variability in the MAF of low-frequency
variants within a population, so matching cases and con-
trols for genetic background is a key step to avoiding
false negatives or positives.
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