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Common polygenic variation enhances risk
prediction for Alzheimer’s disease
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*Data used in the preparation of this article were obtained from the Genetic and Environmental Risk for Alzheimer’s disease
(GERAD) (which now incorporates the Defining Genetic, Polygenic and Environmental Risk for Alzheimer’s Disease using multiple
powerful cohorts, focused Epigenetics and Stem cell metabolomics, PERADES consortium) and the International Genomics of
Alzheimer’s Disease (IGAP) Consortia. For details of these consortia, see Appendix I and the Supplementary material.

The identification of subjects at high risk for Alzheimer’s disease is important for prognosis and early intervention. We investigated
the polygenic architecture of Alzheimer’s disease and the accuracy of Alzheimer’s disease prediction models, including and exclud-
ing the polygenic component in the model. This study used genotype data from the powerful dataset comprising 17 008 cases and
37154 controls obtained from the International Genomics of Alzheimer’s Project (IGAP). Polygenic score analysis tested whether
the alleles identified to associate with disease in one sample set were significantly enriched in the cases relative to the controls in an
independent sample. The disease prediction accuracy was investigated in a subset of the IGAP data, a sample of 3049 cases and
1554 controls (for whom APOE genotype data were available) by means of sensitivity, specificity, area under the receiver operating
characteristic curve (AUC) and positive and negative predictive values. We observed significant evidence for a polygenic component
enriched in Alzheimer’s disease (P=4.9 x 1072°). This enrichment remained significant after APOE and other genome-wide
associated regions were excluded (P=3.4 x 10~'°). The best prediction accuracy AUC =78.2% (95% confidence interval
77-80%) was achieved by a logistic regression model with APOE, the polygenic score, sex and age as predictors. In conclusion,
Alzheimer’s disease has a significant polygenic component, which has predictive utility for Alzheimer’s disease risk and could be a
valuable research tool complementing experimental designs, including preventative clinical trials, stem cell selection and high/low
risk clinical studies. In modelling a range of sample disease prevalences, we found that polygenic scores almost doubles case
prediction from chance with increased prediction at polygenic extremes.
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Introduction

Genome-wide association (GWA) studies have proved a
powerful method to identify susceptibility alleles for com-
plex diseases. The most powerful currently undertaken
study, provided by the International Genomics of
Alzheimer’s Project (IGAP), has identified over 20
Alzheimer’s disease susceptibility loci (Lambert et al.,
2013). GWA study datasets can be used to determine a
polygenic contribution of common single nucleotide poly-
morphisms (SNPs) that show disease association but fail to
meet the accepted P-value threshold for genome-wide sig-
nificance (P < 5 x 107%). Recent studies confirm that the
estimated heritability detected in Alzheimer’s disease
GWA studies (24-35%) (Lee et al., 2013) increases sub-
stantially when weak effect loci are also considered. This
strongly implies that a large proportion of the genetic signal
must lie below the genome-wide significance threshold.
The polygenic score approach encompasses more of the
causal variance, as a genetic risk score is calculated based
not solely on genome-wide significant polymorphisms, but
on all nominally associated variants at a defined signifi-
cance threshold (typically thousands of variants). This
type of analysis has recently shown significant polygenic
contribution in other complex genetic diseases. For example
in Parkinson’s disease, a polygenic basis was confirmed and
shown to correlate with age at disease onset (Escott-Price
et al., 2014). The method can also be used to identify over-
lap in genetic determinants between related disorders, e.g.

schizophrenia and bipolar disorder; depression and anxiety
(Demirkan et al., 2011). While the polygenic method un-
doubtedly introduces noise by including some variants that
are not involved in disease susceptibility (i.e. false posi-
tives), this is more than offset by the increased power to
identify those at highest/lowest risk of disease. Trait differ-
ences between those with highest/lowest polygenic risk
scores have also been identified. For example, in a study
of the Lothian Birth Cohort, increased polygenic risk of
schizophrenia was associated with lower cognitive ability
at age 70 and greater relative decline in general cognitive
ability between the ages of 11 and 70 (Mclntosh et al.,
2013).

We investigated the polygenic architecture of Alzheimer’s
disease using the powerful IGAP GWA dataset (Lambert
et al., 2013). The IGAP dataset was split into two inde-
pendent subsets before the polygenic contribution to
Alzheimer’s disease was investigated by assessing whether
score alleles identified in one subset were significantly
enriched in cases from another subset.

We also investigated the prediction accuracy of the
model, which includes the number of ¢4 and €2 alleles at
the APOE gene, a polygenic score component based upon
genome-wide significant loci, and a polygenic score compo-
nent constructed using all independent markers within the
dataset including statistically not-significant SNPs. For this
analysis we used 3049 cases and 1554 controls for whom
APOE genotype data were available. Furthermore we
looked at the utility of the polygenic score when the
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analysis was restricted to subjects with €2 and &3 alleles
only. As age is a strong predictor of Alzheimer’s disease,
we tested the prediction models in samples stratified by age.
To test the sensitivity of the prediction models to popula-
tion differences we ran the same analyses for subjects from
the UK, USA and Germany separately.

We also modelled the predictive utility of the polygenic
score using a range of disease prevalences reflecting those
incubating disease in different age groups (e.g. 17%
Alzheimer’s disease prevalence in those aged 75-84 or
those with early stage of the disease who are 60-65 years
now). We modelled early stage disease incubation as we
now aware that Alzheimer’s disease may begin between
10-30 years before clinical symptoms are observed
(Frisoni et al., 2010; Weiner et al., 2015). Different disease
prevalences may also reflect groups that already have
biomarker indicators of disease e.g. plaque deposition,
mild cognitive impairment, of which 50% are early
Alzheimer’s disease. We also estimated positive (PPV) and
negative predictive values (NPV) for polygenic score and
extreme cut-off of polygenic score, but point out that
these values are just estimates and may differ in the
sample populations modelled.

Materials and methods

We used the discovery dataset reported by the IGAP consor-
tium (Lambert et al., 2013), comprising 17008 Alzheimer’s
disease cases and 37154 controls. This sample of
Alzheimer’s disease cases and controls comprises four datasets
taken from GWA studies performed by GERAD (Genetic and
Environmental Risk for Alzheimer’s disease), EADI (European
Alzheimer ’s disease Initiative), CHARGE (Cohorts for Heart
and Aging Research in Genomic Epidemiology) and ADGC
(Alzheimer’s Disease Genetics Consortium) (Lambert et al.,
2013). Full details of each study including the samples and
methods used are provided elsewhere (Harold et al., 2009;
Lambert et al., 2009; Seshadri et al., 2010; Hollingworth
et al., 2011; Naj et al., 2011). Each of the four datasets
were imputed with either Impute2 (Howie er al., 2009) or
MACH (Li et al., 2010) software, using the 1000 Genomes
data (release Dec 2010) as a reference panel.

Polygenic score analysis

We followed the approach previously described by the
International  Schizophrenia ~ Consortium  (International
Schizophrenia et al., 2009). The polygenic score analysis re-
quires two independent datasets. For the first, result data are
sufficient as this dataset is used to select the SNPs, the risk
score alleles and their genetic effects. The second dataset is
used to test whether the polygenic risk scores differ in cases
and controls and requires the genotypes for each individual.
The meta-analysed results data of the EADI, CHARGE and
ADGC consortia (13831 cases and 29 877 controls, hereafter
referred to as IGAP.noGERAD) were used for SNP selection.
We used the individual genotypes of the GERAD consortium
(Harold et al., 2009) data (3177 cases and 7277 controls); we
used the GERAD data as the test sample.
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We included only autosomal SNPs that passed stringent
quality control criteria, i.e. minor allele frequencies > 0.01
and imputation quality score > 0.5 in each study. This resulted
in 6928 531 SNPs, which were present in at least 40% of the
Alzheimer’s disease cases and 40% of the controls, being
included in the analysis. The summary statistics across the
three datasets were combined using fixed-effects inverse vari-
ance-weighted meta-analysis.

Using GERAD study data we performed (i) random linkage
disequilibrium pruning using r?> 0.2; and (ii) ‘intelligent’
pruning [—clump option in PLINK (Purcell et al., 2007) genetic
analysis tool] using the same r> parameter and a physical dis-
tance threshold for clumping SNPs of 1 Mb. The random link-
age disequilibrium pruning resulted in 401584 SNPs that are
in relative linkage equilibrium (r* < 0.2) and common between
GERAD and IGAP.noGERAD datasets. The ‘intelligent’ prun-
ing allows one to capture SNPs that are most (even if
not-significantly) associated with the disease in a linkage dis-
equilibrium block. This ‘intelligent” pruning identified 538 363
independent SNPs that were most significantly associated with
Alzheimer’s disease in IGAP.noGERAD data. We selected mar-
kers, based upon significance thresholds, to construct a poly-
genic score in the GERAD data. The polygenic score was
calculated from the effect size (B)-weighted sum of associated
alleles within each subject. Polygenic scores were normalized
by subtracting the mean and dividing by the standard
deviation.

We assessed a variety of significance thresholds for the
selection of markers for polygenic score construction; overlap-
ping panels of markers were used (e.g. significant at P < 0.01,
0.05, 0.1,..., 1 in the IGAP.noGERAD) in the construction of
a subject-level score in GERAD case/control sample. The abil-
ity of each panel-based score distribution to distinguish those
with disease from cognitively normal individuals was assessed
using logistic regression analysis while adjusting for age, sex,
country of origin and three principal components (Harold
et al., 2009), reflecting underlying stratification in the sample
due to population and/or genotyping technique differences.

Analysis of predictive accuracy

To find the best predictors of the Alzheimer’s disease, we
tested a variety of regression models. For this analysis we
used the genotyped (rather than imputed) SNP data for the
following reasons. Imputed genotype data contain probabilities
of each of three genotypes, rather than the actual genotype. As
the relevant software suitable for this analysis requires actual
genotypes [e.g. intelligent pruning (—clump) option in PLINK],
the probabilities were converted to actual genotype data, only
if the probability was >0.9. This conversion increased missing
value rates and, therefore SNPs with >10% missing values
were excluded from the analysis. We ran the predictive ana-
lyses on imputed data, and note that the prediction accuracy is
sensitive to the number of missing genotypes, which was exa-
cerbated by the uncertainty of imputation aggregated across
large numbers of SNPs contributing to the polygenic score.
The intelligent pruning was performed using summary statis-
tics for IGAP.noGERAD data, and thus the most significant
SNPs in this dataset were not necessarily the same as genome-
wide significant SNPs in the full IGAP data. Therefore, to rep-
resent genome-wide significant results in our analyses, we
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chose the best proxies to the genome-wide significant SNPs
(Lambert et al., 2013) from the ‘intelligently’ pruned data.

As the genotyped data at the APOE locus contained only
proxy SNPs for the APOE-e4 and APOE-e2 variants
(rs429358 and rs7412), we limited our analysis to those indi-
viduals (3049 Alzheimer’s disease cases and 1554 controls) for
whom we had APOE genotype data. For the other 21 genome-
wide significant SNPs (Lambert et al., 2013), proxies with
> > 0.8 were available for 11 SNPs in the GERAD data, for
an additional seven loci we had genotyped markers that were
in modest linkage disequilibrium (r* between 0.5 and 0.8) with
a genome-wide significant marker. Two genome-wide signifi-
cant SNPs in the SLC24A4/RIN3 and CD33 loci had proxies
with 1 ~ 0.3 (Supplementary Table 1). We excluded the
DSG2 gene as this association did not replicate in IGAP
stage 2 (Lambert et al., 2013), and the best proxy to the
putative genome-wide significant SNP was in low linkage dis-
equilibrium (r* = 0.06) in the GERAD sample.

We calculated sensitivity, specificity, area under the receiver
operating characteristic curve (AUC), PPV and NPV by com-
paring the observed case/control status and the predicted prob-
ability estimated by logistic regression models using the
prediction() and performance() functions in R-statistical soft-
ware. PPV and NPV values were calculated adjusting for the
lifetime risk of Alzheimer’s disease with BDtest() function,
‘bdpv’ package in R. We chose to use lifetime risk (17%)
and prevalence at age 85 and above (32%) (Hebert et al.,
2013) to prioritise subjects of age 60-65 for clinical trials.
These people may not have Alzheimer’s disease yet, but are
at early stage of the disease, which may manifest 20-30 years
later.

As heterogeneity across cohorts comprising the discovery
(IGAP.noGERAD) and validation (GERAD) datasets may
introduce bias in the prediction modelling, we assessed hetero-
geneity between the UK, German and USA studies by means of
I? values and chi-squared test for heterogeneity for each SNP,
as well as performed calibration analysis with Hosmer-
Lemeshow test [hoslem.test() function in R] for each regression
model which we run in the validation data. For the discovery
dataset we had only summary statistics for each SNP, which
were adjusted for population covariates prior to analyses per-
formed here.

We used as predictors a number of explanatory variables
including APOE-g4, APOE-g2, age, gender, polygenic score
based upon 20 genome-wide significant SNP proxies, and
polygenic score calculated using SNPs with Alzheimer’s disease
association P-values ranging from 0.0001 to 0.9 in the
IGAP.noGERAD sample (APOE and GWA study loci were
excluded; Supplementary Table 1). We assessed significance
of model improvements over APOE (¢4 + ¢€2) and over
GWA study proxies via DeLong’s method [roc.test() function
in R].

We performed similar analyses on imputed data however the
prediction accuracy using this dataset was marginally lower
due to noise introduced through a number of missing values
as a result of genotypes imputed with low certainty (results are
not shown). To test the sensitivity of our results to possible
bias due to age and population stratification, we ran the same
models in subsamples stratified by geographical region
(UK, USA and Germany), and age groups <60, 60-69,
70-79, 80-89 and 90+ years.
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Results

Polygenic risk score analysis

In this study we investigated whether the polygenic score
alleles identified in one Alzheimer’s disease GWA study
were significantly enriched in the cases relative to the con-
trols of an independent Alzheimer’s disease dataset. Our
analysis revealed significant evidence for an overall enrich-
ment of the Alzheimer’s disease polygenic risk score alleles
of the IGAP.noGERAD data in the independent GERAS
(Harold et al., 2009) cohort of 3177 Alzheimer’s disease
cases and 7277 controls from the UK, Europe and USA
(Table 1). The pattern of the polygenic score association
was similar to those seen in studies of other complex dis-
eases shown to have a polygenic signal (International
Schizophrenia et al., 2009; Stergiakouli et al, 2012;
Heilmann et al., 2013; Michailidou et al., 2013). Our
most significant evidence for association was observed
when SNPs with a selection threshold (Pt) of P < 0.5 in
the IGAP.noGERAD sample were included. The P-values
for a significant enrichment in the polygenic score ranged
from 3.9 x 1072° to 4.9 x 1072° dependent on the P+ used
(Table 1). For all significant associations the B-coefficients
(Effects) were positive, indicating that a higher polygenic
score in the IGAP.noGERAD discovery dataset corresponds
to a higher score in the independent GERAD replication
dataset and provides evidence for a polygenic contribution
to the development of Alzheimer’s disease.

As the 538363 independent SNPs that we used to iden-
tify Alzheimer’s disease polygenic risk score alleles included
those most significantly associated with the disease, it is
plausible that our results are artificially biased by SNPs
whose evidence for association is a consequence of linkage
disequilibrium with a known genome-wide significant
SNPs. To investigate this possibility we repeated our ana-
lysis using identical analysis thresholds but excluding all
5006 SNPs that, after linkage disequilibrium pruning,
were present at the 24 genomic regions previously reported
to be strongly associated with Alzheimer’s disease (Lambert
et al., 2013; Escott-Price et al., 2014). The regions were
defined as +=500kb of both sides of the GWA SNPs
(Lambert et al., 2013) or GWA genes (Escott-Price et al.,
2014) and between 44400-46 500kb on chromosome 19
for the APOE locus (Supplementary Table 1). Given that
each of these excluded regions is likely to contain at least
one true Alzheimer’s disease susceptibility allele, this
approach is highly conservative. Nevertheless, this analysis
again revealed significant evidence that individuals with
higher polygenic risk scores had greater probability of
Alzheimer’s disease, with our most significant result
P=3.4x 107" (Table 2). Moreover, we obtained analo-
gous results when we used an alternative method of linkage
disequilibrium pruning, which ignores the strength to
which SNPs are associated with Alzheimer’s disease, and
thus excludes SNPs from the 24 associated regions
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Table | Results of polygenic score analysis based upon a set of independent SNPs (at r? < 0.2)
pruned to retain those most significantly associated with the disease.

Py Effect SE P R? NSNPs
0.0l 0.283 0.0308 39 x 107%° 0.016 16749

0.05 0311 0.0308 59 x 107 0.019 61552

0.1 0.321 0.0309 26 x 1072 0.020 107 834
0.2 0.327 0.0309 3.6 x 1072 0.021 185737
0.3 0317 0.0308 79 x 10°% 0.020 251850
0.4 0.323 0.0308 1.0 x 107% 0.020 308780
0.5 0.327 0.0310 49 x 107%¢ 0.021 359500
0.6 0.326 0.0310 62 x 1072¢ 0.021 404626
0.7 0.325 0.0309 93 x 1072¢ 0.020 444663
0.8 0.328 0.0310 4.1 x 1072 0.021 480271
0.9 0.323 0.0309 1.9 x 1075 0.020 511297
I 0.321 0.0309 30 x 1072 0.020 538362

?Selection threshold of ‘score’ SNPs taken from the IGAPnoGERAD discovery sample.

NSNPs = number of SNPs; SE = standard error.

(Supplementary Table 2). These analyses suggest that our
findings are not dependent on either the previously identi-
fied susceptibility loci or the SNPs that are associated with
Alzheimer’s disease merely as a consequence of linkage dis-
equilibrium with the genome-wide significant loci.

Analysis of predictive accuracy

The identification of subjects at high risk for Alzheimer’s
disease is important for prognosis and early intervention,
identifying biomarkers and disease mechanisms. We used
logistic regression analysis to establish predictive values
(sensitivity, specificity, AUC, PPV, NPV) of genetic risk fac-
tors in a subset of GERADdata (3049 cases and 1554 con-
trols) for whom APOE genotype data were available. The
results of this analysis are summarized in Table 3. All
regression models’ P-values were highly significant
(P <107°%. We also note that addition of the polygenic
score to the regression model has significantly improved all
regression models over and above APOE (¢4 + €2) alone.
Inclusion of the polygenic score based upon proxies to
GWA studies significant SNPs improved the model by
P=2.7 x 1072 (Table 3). We have also tested model im-
provements over APOE + GWAS when added polygenic
score based upon less significant SNPs (Table 3). A nom-
inally significant improvement (P =0.048) was observed
adding polygenic score constructed from 130 SNPs with
Alzheimer’s disease association P < 10~*. A clear change
was observed between adding polygenic score based on
genome-wide significant SNPs and SNPs with Alzheimer’s
disease  association P < 0.05 (model improvement
P=3.6 x 1077), gradually improving with adding more
SNPs with P-values up to 0.5 (model improvement
P=1.3x 10711h).

The APOE-¢4 allele is the strongest known genetic risk
factor for Alzheimer’s disease. In the presence of APOE-g4
alleles, the sensitivity was 0.59 the specificity 0.75 and the
AUC =0.678 (95% CI =0.66-0.69) (Table 3). Inclusion of
the numbers of APOE-€2 alleles in the logistic regression

model slightly increases all prediction accuracy values,
in particular, the AUC to 0.688 (95%
CI=0.67-0.70). As expected, prediction accuracy was fur-
ther enhanced [AUC = 0.715 (95% CI = 0.70-0.73), model
improvement P = 2.7 x 107'*] when we added the genome
wide significant polygenic score variable based upon
proxies for the 20 genome-wide significant SNPs, where
the weights of the SNP risk alleles were identified from
the independent dataset IGAP.noGERAD (Fig. 1).

We further investigated whether the polygenic score
based on risk alleles of small effect identified in one study
(IGAP.noGERAD) were improving the prediction accuracy
in an independent dataset (GERAD). For this we used poly-
genic scores calculated excluding the known Alzheimer’s
disease associated regions (Supplementary Table 2).
The best prediction accuracy AUC=0.745 (95%
CI =0.73-0.79) was achieved when we included the poly-
genic score for SNPs with Alzheimer’s disease association
P-values < 0.5, with highly significant improvement over
APOE alone (P=7.2 x 107%°) and over the APOE +
GWAS model (P=1.3 x 107'!). As a result of logistic the
prediction probability values between 0 and 1 are provided
for each individual. Sensitivity and specificity (proportions
of correctly predicted cases and controls) depend on the
prediction probability threshold—a number between 0
and 1, which classifies all subjects into two groups ‘pre-
dicted cases’ and ‘predicted controls’. Clearly the lower
this threshold, the more subjects are classified as cases,
and therefore the more likely it predicts the majority of
actual cases correctly, i.e. sensitivity increases (and vice
versa for specificity). The commonly used (‘best’) approach
to identify this threshold is to find a compromise between
sensitivity and specificity by minimizing the difference be-
tween these two measures. The values of sensitivity and
specificity were about 0.69 when estimated with the mini-
mized difference probability threshold (MDT = 0.64).

The value AUC for the possible confounders such as sex,
age and principal components, was not excessive, ranged

increased
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Table 2 Results of polygenic score analysis based upon a set of relatively independent SNPs (at
r? < 0.2) pruned to retain those most significantly associated with the disease, excluding the

genome-wide associated loci

P Effect SE P R? NSNPs
0.01 0.154 0.0304 401 x 1077 0.005 16412
0.05 0.232 0.0305 250 x 1074 0.011 60750
0.1 0.256 0.0307 592 x 1077 0.013 106 587
0.2 0.270 0.0307 123 x 107'® 0.014 183 808
0.3 0.263 0.0305 647 x 107'8 0.014 249314
0.4 0.271 0.0306 726 x 107" 0.014 305741
0.5 0.275 0.0307 3.45 x 107" 0.015 356033
0.6 0.274 0.0307 466 x 1077 0.015 400785
0.7 0.273 0.0307 676 x 107" 0.014 440473
0.8 0.276 0.0308 293 x 107" 0.015 475769
0.9 0.271 0.0307 1.13 x 107'® 0.014 506532
I 0.269 0.0307 1.67 x 10~'® 0.014 533356
?Selection threshold of ‘score’ SNPs taken from the IGAPnoGERAD discovery sample.

Exact positions of the excluded regions are given in Supplementary Table I.

between 52-56% (Supplementary Table 3), reaching max-
imum for the model with age and principal components,
the latter indicating possible population stratification.

As age and sex have prediction value for Alzheimer’s
disease, it made sense to include them as predictors into
the model, rather than adjust for them. As expected, our
results show that inclusion of sex and age in the regression
model further improved the prediction accuracy
(AUC = 0.782) (Table 3 and Fig. 1).

The population stratification might inflate prediction ac-
curacy so we calculated the mean of heterogeneity I?
values, which was 13.8% and the proportion of heterogen-
eity nominally significant SNPs was 7%, indicating slight
inflation as compared to the nominal 5%. Table 3 also
presents Hosmer-Lemeshow’s test P-values for each regres-
sion model. All P-values are non-significant indicating that
the models are correctly specified.

To investigate possible population differences in the pre-
diction of Alzheimer’s disease risk, we looked at UK,
German and USA subjects separately. The pattern of pre-
dictive modelling results was similar to the main analyses
results in all strata (Supplementary Table 4). Interestingly,
the prediction in the USA strata was extremely good (the
best AUC = 0.95%). This might be due to the fact that the
majority of subjects (about 80%) in the training set were of
USA origin in contrast to 17% in the test set. We per-
formed the prediction modelling on the whole sample
excluding SNPs with heterogeneity P-value < 0.05. The re-
sults and conclusions were similar.

In the context of practical application, e.g. in experimen-
tal designs comparing cases with high or low polygenic risk
of Alzheimer’s disease, age has to be taken into account.
Supplementary Table 5 presents the results of the genetic
predictive modelling stratified by age groups. The results of
the stratified analyses show a similar pattern of prediction
accuracy. As before, the best accuracy in each stratum was
achieved when the numbers of APOE-g4, APOE-€2 alleles,

the polygenic score variable based upon proxies for the 20
genome-wide significant SNPs, and the polygenic score for
SNPs with Alzheimer’s disease association P-values < 0.5
were included as predictors. The AUC value ranged from
73% to 79%, with the highest in the 60-69 age group
(Supplementary Table 5). The best prediction might indi-
cate that this particular age group has the strongest
common genetic effect, with the younger age group (<60
years) potentially due to Mendelian forms of the disorder,
and the older age groups confounded by general ageing
effects.

Another way to look at the utility of the polygenic score
as a predictor for Alzheimer’s disease is to exclude the
strongest predictor, namely the €4 allele, from the analysis.
There were 1242 cases and 1160 controls in the sample
without €4 allele. When looking at these individuals only,
the AUC was 65.0% when we included the polygenic
scores based upon proxies for the 20 genome-wide signifi-
cant SNPs and for SNPs with Alzheimer’s disease associ-
ation P-values < 0.5, increasing to 65.8% when the
number of €2 alleles was added as a predictor. Similar ac-
curacy was achieved (64.5% and 65.8%) when we ran the
analysis on the whole sample without €4 as a predictor.

Positive and negative predictive
values

Using sensitivity and specificity, a practitioner can make
statements such as ‘assuming that the individual has
Alzheimer’s disease, the test has accuracy 69%’ (here
69% is the sensitivity; Table 3.) However, this statement
might not be helpful for designing an experiment because,
for new samples, all that is known is the prediction. The
PPV answers the question ‘what is the probability that this
person has (or is incubating) Alzheimer’s disease?” With
regard to the practical use of polygenic score in the
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Receiver Operating Characteristic (ROC) curve
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Figure | ROC curves for predictive models with different
predictors for risk of Alzheimer’s disease. GWAS = GWA
study; PS = polygenic score.

identification of subjects at high and low risk for
Alzheimer’s disease, we investigated the prediction accuracy
in terms of PPV and NPV: the percentage of predicted pa-
tients who actually have the disease and the percentage of
predicted who are actually controls, respectively. The re-
sults of these analyses are shown in Table 4. In our
sample PPV reached 81% and NPV =53% (see Table 4,
line corresponding to the model with APOE, GWAS and
SNPs with P < 0.5).

We recognize that the validating sample used here (3049
Alzheimer’s disease cases and 1554 controls) may not rep-
resent the range of samples with Alzheimer’s disease or
those in the early stage of Alzheimer’s disease. We have
therefore attempted to model potential scenarios with prac-
tical utility. Thus, we modelled samples in which 17% have
or are in the early stage of Alzheimer’s disease, as well as
33% and 50%. This provides an estimate only and would
need to be tested in appropriate sample populations.
A crucial point is that prevalence affects the predictive
value of any test. This means that the same diagnostic
test will have a different predictive accuracy according to
the clinical setting in which it is applied. With sensitivity
and specificity values at 69% (Table 3), as prevalence rises
from 17% (e.g. prevalence of Alzheimer’s disease among
75-84 year olds) to 33% (e.g. among those aged 85 +),
PPV will rise from 31% to 52% (Table 4): a huge differ-
ence in the clinical interpretation of the same test result.
Furthermore, if the sample is enriched for Alzheimer’s dis-
ease cases, e.g. subjects are preselected for clinical trials on
the basis of deposition of amyloid plaques or have mild
cognitive impairment, with a high percentage estimated to
convert to Alzheimer’s disease (Yesavage et al., 2002). Thus
modelling with prevalence of 50%, will increase the PPV to

V. Escott-Price et al.

68% (Table 4), meaning that if the sample is enriched for
cases, then with help of polygenic score, 68% of the sample
will be correctly predicted as cases, as compared to 50% if
chosen at random. Importantly, we will also correctly pre-
dict 68% of controls as the negative predictive value in this
example is 0.684. The prediction accuracy can be enhanced
by including individuals with extreme polygenic score cut-
offs. We looked at deciles of the polygenic score distribu-
tion, estimated the range of predictive probabilities per
decile and looked at the proportion of cases (and controls)
correctly predicted. Figure 2 shows the results of this ana-
lysis. According to Fig. 2 our predictive modelling is fairly
accurate (cf. black circle points with the box-plots in Fig.
2). The minimum polygenic score in the last decile is 1.32.

To demonstrate utility of polygenic score we looked at
most extreme polygenic score cut-offs and estimated PPV
and NPV values, adjusted for (i) 17% lifetime risk of
Alzheimer’s disease, approximately representing a general
population at age 60-65, who will potentially get
Alzheimer’s disease later; (ii) 33% prevalence; and (iii)
50% prevalence, representing a sample with high percent-
age subjects, estimated to convert to Alzheimer’s disease
(Supplementary Tables 6 and 7). Adjusting for 17% preva-
lence, PPV and NPV values were PPV = 36%, NPV = 94%
and PPV = 66% and NPV = 93% for polygenic score >2.3
and polygenic score >2.4, respectively. Increasing
prevalence to 33% and 50% increased the PPV values to
82% and 90%, respectively (Supplementary Table 6), for
subjects with normalized total polygenic score >2.4. Of
course, these predictive values are just an indication of
the possible achievable accuracy, as their estimations were
based upon very small numbers (43 cases and four controls
with polygenic score >2.3; and 32 cases and one control
with polygenic score >2.4). Similar estimations were made
for subjects with very low polygenic score, aiming to clas-
sify controls with a high precision (Supplementary Table 6).

Discussion

The molecular genetic data reported in this study provide
strong support for a large polygenic contribution to the
overall heritable risk of Alzheimer’s disease. This implies
that the genetic architecture of Alzheimer’s disease includes
many common variants of small effect that are likely to
reflect a large number of susceptibility genes and a complex
set of biological pathways related to disease.

First, we have shown that including genetic variants to a
P-value < 0.5, as well as age and sex, produces the best
AUC = 78.2%. Second, we show that including full poly-
genic score (P < 0.5) significantly improves AUC over
APOE + 20 proxies to genome-wide significant SNPs
(P=1.3x10"") and APOE alone (P=7.2 x 1073,
Third, our data also indicate that prediction can be further
improved by limiting sample selection polygenic extremes.

However, it must be noted that our case-control dataset
(3049 Alzheimer’s disease cases and 1554 controls) does
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Table 4 Positive and negative predictive values, adjusted for prevalence of Alzheimer’s disease in different risk drops

for Alzheimer’s disease.

In our sample

17% prevalence

33% prevalence

50% prevalence

(age 75-84)° (age 85+)? MchP

Model PPV NPV PPV NPV PPV NPV PPV NPV

c4 0.821 0.483 0273 0919 0.474 0.826 0.647 0.700
c4 + £2 0.821 0.483 0273 0919 0.474 0.826 0.647 0.700
&4 + £2 + 20 GWAS SNPs + PS P < 00001 0.796 0.504 0290 0.907 0.49 0.802 0.666 0.666
&4 + £2 + 20 GWAS SNPs + PS P < 0.001 0.798 0.507 0292 0.908 0.499 0.804 0.669 0.669
&4 + £2 + 20 GWAS SNPs + PS P < 0,01 0.798 0.506 0292 0.908 0.498 0.803 0.668 0.668
&4 + £2 + 20 GWAS SNPs + PS P < 0.05 0.801 0511 029 0.909 0.502 0.806 0.672 0.672
&4 + £2 + 20 GWAS SNPs + PS P < 0.| 0.804 0516 0.300 0911 0.508 0810 0.677 0.677
&4 + £2 + 20 GWAS SNPs + PS P < 0.2 0.808 0.522 0.305 0913 0514 0813 0.682 0.682
&4 + £2 + 20 GWAS SNPs + PS P < 0.3 0.808 0.523 0.306 0913 0514 0814 0.683 0.683
&4 + £2 + 20 GWAS SNPs + PS P < 0.4 0.809 0.524 0.307 0913 0515 0814 0.683 0.683
&4 + £2 + 20 GWAS SNPs + PS P < 0.5 0.809 0.525 0.307 0.914 0.516 0.815 0.684 0.684
&4 + £2 + 20 GWAS SNPs + PS P < 0.6 0811 0.527 0.309 0914 0518 0816 0.686 0.686
&4 + £2 + 20 GWAS SNPs + PS P < 0.7 0810 0.526 0.309 0914 0518 0816 0.685 0.685
&4 + £2 + 20 GWAS SNPs + PS P < 0.8 0810 0.525 0.308 0914 0517 0815 0.685 0.685
&4 + £2 + 20 GWAS SNPs + PS P < 0.9 0.809 0.523 0.306 0913 0515 0814 0.683 0.683

*Hebert et al. (2013).
®Yesavage et al. (2002).
PS = polygenic score; GWAS = GWA study; MCI = mild cognitive impairment.
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Figure 2 Deciles of the polygenic score distribution with
estimated range of predictive probabilities per decile (box-
plots) and the proportion of cases (and controls) correctly
predicted. PS = polygenic score.

not reflect other populations in which different proportions
of Alzheimer’s disease cases or those at the early stage of
the disease. We therefore attempted to model other data
samples that may be of use. We modelled 17% of caseness
reflecting prevalence of Alzheimer’s disease at ages 75-84
years, or in those possibly incubating Alzheimer’s disease at
an early age range of 60-65 years. We observed that using

more extreme polygenic scores, we increased the predictive
value from 31% to 36% and almost doubled (66%) for a
more extreme polygenic score cut-off. We also estimated
PPV and NPV at 33% and 50% of caseness. At 33% case-
ness adding polygenic score estimated to increase PPV to
52% in the whole range of polygenic score and up to 82%
for more extreme cut-off, thus indicating that polygenic
utility alongside other predictors of
Alzheimer’s disease in a variety of experimental designs
including: preventative clinical trials, the selection of
induced pluripotent stem cell lines to model Alzheimer’s
disease, and the investigation of biomarkers throughout
disease development. However, these are estimates extrapo-
lated from our data and need to be tested in actual popu-
lation samples.

The Alzheimer’s disease polygenic score alleles identified in
the GERAD cohort are not significantly enriched (minimum
P=0.14) in an independent GWA study for Parkinson’s
disease (Moskvina et al., 2013) indicating that the identified
polygenic component of Alzheimer’s disease is disease-
specific. Our results are unlikely to be due to population
stratification, although we observe greater predictive accur-
acy in samples enriched for individuals from the same popu-
lation in both the discovery and validating dataset
(AUC = 95% in subset of USA subjects used for validation).

Further studies are required if we are to progress from
the knowledge that there is a polygenic contribution to
Alzheimer’s disease, to understanding the specific genetic
factors that comprise the polygenic component. Increasing
the discovery sample size will allow more loci with increas-
ingly small individual effect sizes to pass the threshold of
genome-wide significance, and should substantially refine

scores have
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the polygenic scores derived here. Moreover, as we have
previously shown, using approaches such as gene pathway
analyses it is possible to use the captured polygenic signal
and identify genes or biological systems relevant to
Alzheimer’s  disease  (International =~ Genomics  of
Alzheimer’s Disease, 2015).

It is possible that our findings are influenced by rare
Alzheimer’s disease susceptibility variants that are in link-
age disequilibrium with the common alleles analysed in this
study. The ongoing efforts of studies performing exome
and whole genome sequencing in large numbers of
Alzheimer’s disease case—control cohorts will allow us to
establish the haplotype structure of common and rare al-
leles an in turn, to understand which loci are subject to
‘synthetic association’ (Dickson et al., 2010). To date, we
have not observed a significant excess of rare copy number
variants in cases in our GERAD sample and did not repli-
cate findings of previous Alzheimer’s disease copy number
variant studies (Chapman et al., 2013). We also found no
excess of homozygous tracts in Alzheimer’s disease cases
compared to controls and no individual run of homozygos-
ity showed association to Alzheimer’s disease in the
GERAD sample (Sims et al., 2011). However, as previously
demonstrated in other complex diseases (Purcell ef al.,
2014), future polygenic score analysis of variants identified
by exome/genome sequencing are expected to further
inform our understanding of the genetic underpinnings of
Alzheimer’s disease.

In conclusion, the derived polygenic scores have demon-
strated utility for calculating an individual level genetic risk
profile that can predict disease development. Measures of
polygenic burden could prove useful in distinguishing
patients with Alzheimer’s disease whose disease liability is
most likely to carry a large or small genetic component.
This utility of the developed polygenic score is increased
among subjects aged 60-69, which is a desirable target
group for identification and preventative intervention of
Alzheimer’s disease. Identifying these individuals would
benefit study recruitment into clinical trials and could fa-
cilitate a better understanding of how gene-gene and gene-
environment interactions increase risk for Alzheimer’s
disease.
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