
Genetic influences on schizophrenia and subcortical brain 
volumes: large-scale proof-of-concept and roadmap for future 
studies

Barbara Franke#2,3,4, Jason L Stein#5,6, Stephan Ripke#7,8,9, Verneri Anttila7,8, Derrek P 
Hibar5, Kimm J E van Hulzen2,4, Alejandro Arias-Vasquez2,3,4,10, Jordan W Smoller8,11,12, 
Thomas E Nichols13,14, Michael C Neale15, Andrew M McIntosh16, Phil Lee8,11,12, Francis J 
McMahon17, Andreas Meyer-Lindenberg18, Manuel Mattheisen19,20,21, Ole A 
Andreassen22,23, Oliver Gruber24, Perminder S Sachdev25,26, Roberto Roiz-Santiañez27,28, 
Andrew J Saykin29,30,31, Stefan Ehrlich32, Karen A Mather25, Jessica A Turner33,34, 
Emanuel Schwarz18, Anbupalam Thalamuthu25, Yin Yao Shugart17, Yvonne YW Ho35, 
Nicholas G Martin35, Margaret J Wright35,36, Schizophrenia Working Group of the 
Psychiatric Genomics Consortium37, ENIGMA Consortium37, Michael C O'Donovan#39,40, 
Paul M Thompson#5, Benjamin M Neale#7,8,11,41, Sarah E Medland#35, and Patrick F 
Sullivan#42,43,44

2 Department of Human Genetics, Radboud University Medical Center, Nijmegen, The 
Netherlands 3 Department of Psychiatry, Radboud University Medical Center, Nijmegen, The 
Netherlands 4 Donders Institute for Brain, Cognition and Behaviour, Radboud University, 
Nijmegen, The Netherlands 5 Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & 
Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del 
Rey, CA, USA 6 Neurogenetics Program, Department of Neurology, UCLA School of Medicine, 
Los Angeles, USA 7 Analytic and Translational Genetics Unit, Massachusetts General Hospital, 
Boston, MA, USA 8 Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, 
Cambridge, MA, USA 9 Department of Psychiatry and Psychotherapy, Charité 
Universitätsmedizin Berlin, CCM, Berlin, Germany 10 Department of Cognitive Neuroscience, 
Radboud University Medical Center, Nijmegen, The Netherlands 11 Psychiatric and 
Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, USA 12 

Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms

Correspond with: Barbara Franke, PhD, Department of Human Genetics (855), Radboud University Medical Center, Nijmegen, The 
Netherlands. V: +31-24-3610181, ; Email: barbara.franke@radboudumc.nl Patrick F Sullivan, MD FRANZCP, Departments of 
Genetics, CB #7264, 5097 Genomic Medicine Building, University of North Carolina, Chapel Hill, NC 27599-7264 USA. ; Email: 
pfsulliv@med.unc.edu. V: +1 919-966-3358.
37See Consortium collaborator lists

URLs
Psychiatric Genomics Consortium (http://pgc.unc.edu); ENIGMA (http://enigma.ini.usc.edu); 1000 Genomes Project imputation panel 
(http://mathgen.stats.ox.ac.uk/impute); matSpD interface (http://genepi.qimr.edu.au/general/daleN/matSpD).

Conflicts of Interest
Several of the authors/contributors are employees of companies: Johnson and Johnson, Pfizer (C.R.S., J.R.W., H.S.X), F. Hoffman-La 
Roche (E.D., L.E), Eli Lilly (D.C., Y.M., L.N), Janssen (S.G., D.W., Q.S.L.), and deCODE genetics (S.G, K.S., H.S.). P.F.S is a 
scientific advisor to Pfizer. None of these companies influenced the design of the study, the interpretation of the data, the amount of 
data reported, or financially profit by publication of these pre-competitive results. The other authors do not report conflicts of interest.

HHS Public Access
Author manuscript
Nat Neurosci. Author manuscript; available in PMC 2016 August 01.

Published in final edited form as:
Nat Neurosci. 2016 March ; 19(3): 420–431. doi:10.1038/nn.4228.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://pgc.unc.edu
http://enigma.ini.usc.edu
http://mathgen.stats.ox.ac.uk/impute
http://genepi.qimr.edu.au/general/daleN/matSpD


Department of Psychiatry, Harvard Medical School, Boston, MA, USA 13 FMRIB Centre, 
University of Oxford, United Kingdom 14 Department of Statistics & WMG, University of Warwick, 
Coventry, United Kingdom 15 Departments of Psychiatry & Human Genetics, Virginia 
Commonwealth University, Richmond, VA, USA 16 Division of Psychiatry, Royal Edinburgh 
Hospital, Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, 
Edinburgh, United Kingdom 17 Intramural Research Program, National Institutes of Health, US 
Dept of Health & Human Services, Bethesda, USA 18 Central Institute of Mental Health, Medical 
Faculty Mannheim, University Heidelberg, Mannheim, Germany 19 Department of Biomedicine, 
Aarhus University, Aarhus, Denmark 20 The Lundbeck Foundation Initiative for Integrative 
Psychiatric Research, iPSYCH, Aarhus and Copenhagen, Denmark 21 Center for integrated 
Sequencing, iSEQ, Aarhus University, Aarhus, Denmark 22 NORMENT - KG Jebsen Centre, 
Institute of Clinical Medicine, University of Oslo, Oslo, Norway 23 Division of Mental Health and 
Addiction, Oslo University Hospital, Oslo, Norway 24 Center for Translational Research in Systems 
Neuroscience and Psychiatry, Department of Psychiatry and Psychotherapy, University Medical 
Center, Goettingen, Germany 25 Centre for Healthy Brain Ageing, School of Psychiatry, University 
of New South Wales (UNSW), Sydney, Australia 26 Neuropsychiatric Institute, Prince of Wales 
Hospital, Sydney, Australia 27 Department of Psychiatry, University Hospital Marqués de 
Valdecilla, School of Medicine, University of Cantabria-IDIVAL, Santander, Spain 28 Cibersam 
(Centro Investigación Biomédica en Red Salud Mental), Madrid, Spain 29 Center for 
Neuroimaging, Radiology and Imaging Sciences, Indiana University School of Medicine, 
Indianapolis, USA 30 Indiana Alzheimer Disease Center, Indiana University School of Medicine, 
Indianapolis, USA 31 Medical and Molecular Genetics, Indiana University School of Medicine, 
Indianapolis, USA 32 Department of Child and Adolescent Psychiatry, Faculty of Medicine and 
University Hospital, TU Dresden, Dresden, Germany 33 Georgia State University, Atlanta, USA 34 

Mind Research Network, Albuquerque, NM, USA 35 QIMR Berghofer Medical Research Institute, 
Brisbane, Australia 36 School of Psychology, University of Queensland, Brisbane, Australia 39 

MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine 
and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK 40 National Centre 
for Mental Health, Cardiff University, Cardiff, UK 41 Medical and Population Genetics Program, 
Broad Institute of MIT and Harvard, Cambridge, MA, USA 42 Department of Medical Epidemiology 
and Biostatistics, Karolinska Institutet, Stockholm, Sweden 43 Department of Genetics, University 
of North Carolina, Chapel Hill, NC, USA 44 Department of Psychiatry, University of North Carolina, 
Chapel Hill, NC, USA

# These authors contributed equally to this work.

Abstract

Schizophrenia is a devastating psychiatric illness with high heritability. Brain structure and 

function differ, on average, between schizophrenia cases and healthy individuals. As common 

genetic associations are emerging for both schizophrenia and brain imaging phenotypes, we can 

now use genome-wide data to investigate genetic overlap. Here we integrated results from 

common variant studies of schizophrenia (33,636 cases, 43,008 controls) and volumes of several 

(mainly subcortical) brain structures (11,840 subjects). We did not find evidence of genetic overlap 

between schizophrenia risk and subcortical volume measures either at the level of common variant 
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genetic architecture or for single genetic markers. The current study provides proof-of-concept 

(albeit based on a limited set of structural brain measures), and defines a roadmap for future 

studies investigating the genetic covariance between structural/functional brain phenotypes and 

risk for psychiatric disorders.

Keywords

schizophrenia; MRI; brain imaging; genetics; GWAS; meta-analysis; endophenotype

Introduction

Schizophrenia is a devastating, highly heritable psychiatric disorder that affects 

approximately 1% of the population. 
1
 Despite marked recent successes in identifying 

genetic risk factors and pathways involved in schizophrenia, 
1-4 the neurobiology of 

schizophrenia remains poorly understood.

Many differences in brain function and structure have been reported in cases with 

schizophrenia compared with controls, although there is considerable inter-individual 

heterogeneity. Of specific relevance to this study, a recent meta-analysis found that 

schizophrenia cases had smaller hippocampus, amygdala, thalamus, nucleus accumbens, and 

intracranial volumes along with larger pallidum and lateral ventricle volumes.
5,6 

Hippocampal and lateral ventricle volumes were influenced by antipsychotic medication 

use.
5
 In addition, mean hippocampal volume is smaller in high-risk individuals and in 

unaffected first-degree relatives of schizophrenia cases. 
7,8

Structural brain measurements, such as those from magnetic resonance imaging (MRI), 

typically have high reproducibility and low measurement error and can be highly 

heritable. 
9,10

 Increasingly large studies of brain morphometry are being performed, and are 

being used to evaluate the effects of common and rare genetic contributions on brain 

structure. 
9,11

With genome-wide association results available from large samples for schizophrenia and 

for MRI-based brain phenotypes, we can now use genomic approaches to evaluate the 

genetic link between disease risk and such brain measures. Findings of covariation would 

help us develop new hypotheses about the structures involved in the primary disease process 

of schizophrenia. In this proof-of-concept study, we created a roadmap for the analysis of 

genetic covariation using a battery of complementary methods. We evaluated the overlap of 

common genetic variation at the high level of genetic architecture as well as of individual 

genetic variants. We also evaluated common genetic variant effect sizes on neuroimaging 

phenotypes and schizophrenia. The data we analyzed are from large mega-analyses by the 

PGC (Psychiatric Genomics Consortium) for schizophrenia 
3
 and meta-analyses from the 

ENIGMA consortium (Enhancing NeuroImaging Genetics through Meta-Analysis) for eight 

MRI volumetric measures (amygdala, caudate nucleus, hippocampus, nucleus accumbens, 

pallidum, putamen, thalamus, and intracranial volume (ICV)). 
9
 Our results suggest that 

common genetic variation predisposing to schizophrenia does not show evidence of overlap 
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with common genetic variation influencing these eight brain structure volumes. Genetic 

effect sizes did not differ significantly for neuroimaging and schizophrenia phenotypes.

Results

We analyzed genome-wide association data for schizophrenia (33,636 cases and 43,008 

controls) and eight structural MRI brain measures (11,840 individuals). Sample 

characteristics are presented in Supplementary Table 1. These data were used for a 

comprehensive set of comparisons of common variant genetic sharing between 

schizophrenia and brain volumetric measures.

Comparisons of common variant genetic architectures

Linkage disequilibrium score regression (LDSR)—Using GWA summary statistics 

(excluding the extended MHC region), we used LDSR 
12

 to estimate the heritability of 

schizophrenia due to common SNPs at 25.5% (SE=1.1%) along with eight brain volumetric 

measures (Table 1). The SNP-based heritability estimates for the MRI measures ranged from 

11% (nucleus accumbens) to 30% (putamen). The heritability for amygdala volume was 

non-significant in this sample. The genetic correlations of MRI volumetric measures with 

schizophrenia were all non-significant (Table 1). These negative findings stand in contrast to 

the relatively high common-variant correlations of schizophrenia with bipolar disorder and 

major depressive disorder. 
13,14

Genetic predisposition scores—In the genetic “risk” score approach, 
15

 we considered 

the ENIGMA GWA results as “training” sets in order to compute common variant genetic 

predisposition to (for instance) greater ICV for each schizophrenia case and control. We then 

compared the mean polygenic predisposition score in cases to that in controls. None of the 

correlations was significant after correction for eight comparisons (Figure 1 and Table 2). 

The strongest effect (for hippocampal volume) was almost entirely driven by one SNP 

(rs2268894), 
9
 but only three SNPs met the p-value threshold of 1×10−6 for inclusion in this 

analysis. These null results are in contrast to the robust evidence for common variant genetic 

correlations between schizophrenia and other psychiatric disorders. 
16

Rank-rank hypergeometric overlap test (RRHO) 
17

—We quantified overlap between 

pairs of GWA results ranked by their association statistics using RRHO based on 172,652 

SNPs. The overlap of rank-ordered lists of genetic variants influencing any of the brain MRI 

volumes and those conferring risk for schizophrenia was not statistically significant (Figure 
2). The overlap between genetic contributions to putamen and caudate nucleus volumes was 

used as a positive control; the overlap between genetic contributions to hippocampal volume 

and the presumably unrelated trait of thumb whorl structure 
18

 was used as a negative 

control. The latter comparison showed similar overlap to that of brain structure and 

schizophrenia.

Sign tests

We compared the pattern of GWA results by checking whether the signs of the regression 

coefficients 
3
 were consistently in the same direction between the top associations for 
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schizophrenia and those for the MRI volumetric measures. None of the sign tests showed 

consistent directions of effect (Table 3).

Analysis of single genetic variants

Genome-wide significant associations—We evaluated the 128 genome-wide 

significant schizophrenia index SNPs 
3
 for association with brain volumes. 

9
 One association 

survived correction for 876 comparisons: rs2909457*A (chr2:162,845,855, intergenic 

between SLC4A10 and DPP4) was associated with decreased hippocampal volume 

(P=1.2×10−6, effect size=−23 mm3 per allele) and decreased risk for schizophrenia (odds 

ratio=0.94, P=4.6×10−8). However, this finding was in the opposite direction of expectations 

given previous observations of smaller hippocampal volumes in cases relative to controls 

(Supplementary Table 2). 
6
 Starting with the eight SNPs previously found associated with 

the brain volumes, 
9
 no significant associations with schizophrenia were observed 

(Supplementary Table 2).

SNP meta-analyses—We also performed GWA meta-analyses of the schizophrenia and 

brain structure results. The Manhattan plots for these analyses are shown in Supplementary 
Figures 1-8. In Supplementary Table 3, the genome-wide significant findings are given. In 

most instances, the results were entirely driven by the association with schizophrenia.

Conjunction analysis—To identify individual SNPs that influence risk for both 

schizophrenia and brain structure, we implemented a conjunction test. 
19

 No SNP showed 

genome-wide significant association with both schizophrenia and brain structure, although 

several loci were detected at sub-threshold levels (Supplementary Figure 9).

Comparison of genetic effect sizes for clinical and brain volume measures

Some investigators have suggested that common genetic variants underlying continuous 

brain imaging endophenotypes may have larger effect sizes than those for neuropsychiatric 

disorders (e.g., schizophrenia). 
20-22

 To test this hypothesis, we compared the maximum 

effect sizes from replicated genetic associations for each trait. For comparability across 

quantitative or binary traits, effect sizes were assessed as percent of variance explained (for 

MRI volumes) or percent of variance explained on the liability scale (for schizophrenia). 
23 

As shown in Supplementary Figure 10, individual common variants had only a small 

influence on either brain structure or schizophrenia. Effect sizes for individual SNPs were 

similar for both brain structure and schizophrenia, and of the same order as those observed 

for anthropometric traits such as height. 
24

Discussion

In this proof-of-concept study, we evaluated the relationship between common genetic 

variants implicated in schizophrenia and those associated with subcortical brain volumes and 

ICV. The sample sizes were the largest yet applied to these questions. With a comprehensive 

set of analyses, we did not find evidence for notable genetic correlations, either at a high 

level (i.e., common variant genetic architecture) or for single genetic markers. Our findings 

do not support the hypothesis that these subcortical brain volume measures and ICV are 
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causally associated with schizophrenia risk. Similarly, we did not find evidence that 

common SNPs have pleiotropic effects on these MRI volumes and schizophrenia. Our 

results suggest alternative hypotheses that require consideration and refutation – that the 

volumetric differences observed in schizophrenia cases may be epiphenomena unrelated to 

its primary genetic causes, a result of prenatal environment, or result from reverse 

causation. 
25

 Finally, the effect sizes of SNPs implicated in schizophrenia and those 

associated with brain volumes were broadly similar.

We studied a limited set of brain MRI measures. Our study should be considered a proof-of-

concept for evaluating genetic covariation rather than decisively addressing the full range of 

hypotheses pertaining to the genetic overlap of brain imaging measures with 

neuropsychiatric disease risk. We provide a rigorous roadmap for more definitive and larger 

future studies. Full elucidation of the brain correlates of schizophrenia will require a fuller 

set of structural and functional imaging measures (perhaps at the voxel level) along with 

evaluation of common and rare genetic variation.

The null findings of this study should be interpreted in light of several qualifiers. First, 

several brain regions that are not expected a priori to overlap with schizophrenia were 

included for completeness (e.g., caudate and putamen volumes are uncorrelated with 

schizophrenia, 
5,6 and amygdala volume did not have SNP-heritability different from zero in 

our study). Second, other neuroimaging phenotypes could be more informative for 

schizophrenia (e.g., cortical thickness, ventricular volume, diffusion tensor imaging, or 

functional activity). 
26,27

 Indeed, genetic variants associated with disease may influence 

distinct cell types within circumscribed neural circuits that may not be captured by MRI. 

Third, the ENIGMA MRI protocol served to harmonize images obtained from different 

scanners and protocols. While we have shown this performs well, genetic signal might have 

been lessened. Fourth, in this study of adults, we may not have observed the brain regions at 

the most appropriate time for identifying genetic overlap with schizophrenia, given that the 

volumes of most subcortical brain structures plateau in late adolescence to early adulthood. 

While schizophrenia is widely believed to be a neurodevelopmental disorder, 
28

 its onset 

generally follows the period of greatest growth for these structures. Fifth, relatively small 

genetic correlations between schizophrenia and these brain volumes may have been masked 

by combining datasets in a meta-analytic framework (e.g., heterogeneous sample 

characteristics such as age, sex, and technical noise resulting from different MRI scanners or 

acquisition sequences may remain). It is conceivable that this resulted in the lower than 

expected SNP-heritability for some of these measures. Mega-analysis could be an important 

way to improve control for heterogeneity. Sixth, we evaluated only common genetic 

variation. Although common genetic variation explains far more of the risk for 

schizophrenia than rare copy number variation or rare deleterious exonic variation, 
2
 rare 

genetic effects on brain structure could be salient for some cases of schizophrenia. Finally, 

the sample sizes and statistical power of the schizophrenia and neuroimaging data sets 

differed. The PGC has attained a sample size sufficient to detect many common loci of small 

effect, whereas ENIGMA is earlier in the discovery arc. 
29

Brain volume heritability estimates from genome-wide data obtained using LDSR 
14

 were 

lower than observed in previous studies. 
30

 This was expected for the subcortical regions, as 
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those were corrected for ICV. For ICV, a likely source of difference with previous studies is 

the removal of the extended MHC region from our analysis.

Although we found no evidence for genetic correlation between subcortical volumes and 

schizophrenia, we also investigated whether effect sizes of genetic variants are larger for 

brain measures than for schizophrenia. This point has been debated with respect to 

“endophenotype” studies, which attempt to identify quantifiable brain measures or other 

biomarkers thought to be intermediate between genotype and the liability to a disorder. 
31-33 

An endophenotype that lies on a causal pathway to a clinical disorder could increase power 

for genetic studies. Prior studies addressed this hypothesis in far smaller samples. We 

compared SNP effect sizes for the top findings for schizophrenia with those for subcortical 

volumes (hippocampus, putamen, caudate) and ICV. The results of this analysis showed 

similar effect sizes. Importantly, the endophenotype concept is unlikely to be sufficiently 

addressed in these analyses given the reasons noted above.

In conclusion, this paper presents a roadmap for comprehensive evaluation of genetic 

covariation between neuropsychiatric disease liability and brain imaging measures. The 

current analysis was limited to a small number of brain volume phenotypes, and no evidence 

of genetic overlap was identified. More extensive brain-wide and genome-wide analyses 

may help in the mechanistic dissection of genetic risk for disease.

Online Methods

A supplementary methods checklist is available. The data used for the analyses described 

here are available to researchers. The ENIGMA data can be obtained from http://

enigma.ini.usc.edu/enigma-vis. The PGC data can be downloaded from http://

www.med.unc.edu/pgc/downloads.

PGC schizophrenia

We mega-analyzed individual genotype data from 46 European-ancestry schizophrenia 

GWAS datasets (full details in reference 
3
). Briefly, quality control and imputation were 

performed by the PGC Statistical Analysis Group for each dataset separately. Genotype 

imputation was with the pre-phasing/imputation stepwise approach implemented in 

IMPUTE2/SHAPEIT (chunk size of 3 Mb and default parameters) using the 1000 Genomes 

Project dataset (phase 1, August 2012, URLs). After imputation, we identified autosomal 

SNPs with high imputation accuracy across all samples. For robust relatedness testing and 

population structure analysis, we evaluated a subset of SNPs following LD-pruning (r2 > 

0.02) and frequency filtering (MAF > 0.05). For association testing, we evaluated the 46 

datasets separately using an additive logistic regression model including ancestry principal 

components as covariates, and then conducted a meta-analysis of the 52 sets of results using 

an inverse-weighted fixed effects model. After excluding subjects who were also in 

ENIGMA (N=458, see below), 33,636 cases and 43,008 controls were used for calculations 

(Supplementary Table 1).
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ENIGMA, sample with brain volume measures and assessment of endophenotype

The data analyzed here are from the ENIGMA analysis of eight MRI volumetric measures 

(full details in reference 
9
). MRI brain scans and genome-wide genotype data were available 

for 11,840 subjects from 22 cohorts (Supplementary Table 1). Only cohorts without 

schizophrenia cases and controls overlapping with the PGC schizophrenia samples were 

included. Participants clustered with subjects of known European ancestry as verified by 

multidimensional scaling (MDS) analysis. Genomic data were imputed to a reference panel 

(1000 Genomes, v3 phase1) comprising only European samples and with monomorphic 

SNPs removed. Imputation was performed at each site using MaCH for phasing and 

minimac for imputation. 
34

 Only SNPs with an imputation score of RSQ > 0.5 and minor 

allele counts > 10 within each site were included. Tests of association were conducted 

separately for eight MRI volumetric phenotypes (nucleus accumbens, amygdala, caudate 

nucleus, hippocampus, pallidum, putamen, thalamus, and ICV) with the following covariates 

in a multiple linear regression framework: age, age
2
, sex, 4 MDS components (to account for 

population structure), ICV (for subcortical brain phenotypes), and diagnosis (when 

applicable). The GWA statistics from each of the 22 sites were combined using a fixed-effect 

inverse variance-weighted meta-analysis as implemented in METAL. 
35

Removal of duplicated individuals

Subject overlap between all PGC and ENIGMA cohorts was evaluated using a checksum 

algorithm in order to ensure the robustness of our results given that some analyses were 

sensitive to the presence of duplicate individuals. For each individual, ten checksum 

numbers were created based on ten batches of 50 SNP genotypes and compared between 

individuals from both consortia. Based on these comparisons and a general exclusion of 

cohorts containing schizophrenia cases, 1,517 individuals were removed from ENIGMA and 

458 subjects were removed from the PGC.

Linkage disequilibrium score regression (LDSR)

For LDSR, each dataset underwent additional filtering. Only markers overlapping with 

HapMap Project Phase 3 SNPs and passing the following filters were included: INFO score 

> 0.9 (where available), study missingness of 0, and MAF >1%. Indels and strand-

ambiguous SNPs were removed. To remove a potential source of bias, all SNPs in the 

extended MHC region (chr6:25-35 Mb) were removed from all datasets. The schizophrenia 

analysis included only results from European studies were used (LDSR requires LD data 

from a comparable sample). For the ENIGMA amygdala results, the mean Χ2 was too low 

(1.0051) to reliably estimate heritability using LDSR.

The analysis was conducted using a two-step procedure with the LD-scoring analysis 

package. 
12,14

 An unconstrained regression was run to estimate the regression intercepts for 

each phenotype, followed by an analysis with regression intercepts constrained to those 

estimated in the first step and the covariance intercept defined as zero (note that we took 

steps to exclude overlapping samples). Standard errors were estimated using a block 

jackknife procedure and used to calculate P-values.
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Genetic predisposition analyses

To investigate the combined impact of ENIGMA association results on case-control status in 

the PGC schizophrenia data, we performed a series or genetic predisposition score analyses. 

For each ENIGMA volumetric phenotypes, we excluded SNPs with MAF <2%, indels, and 

SNPs in the extended MHC region (chr6:25-34 Mb). We then “clumped” the data, 

discarding variants within 500 kb of and in r2 ≥ 0.1 with another more significant marker. 

We performed genetic predisposition score prediction of target subgroups as originally 

described 
15

 for several P-value thresholds (5×10−8, 1×10−6, 1×10−4, 0.001, 0.01, 0.05, 0.1, 

0.2, 0.5, 1.0), multiplying the effect size of the ENIGMA phenotype of each variant by the 

imputation probability for the risk allele in each individual. The resulting values were 

summed so that each individual had a genetic predisposition score for further analyses. Two 

outcome variables are reported in Table 2: the significance of the case-control score 

difference analyzed by logistic regression (including ancestry-based principal components 

and a study indicator as covariates) and the proportion of variance explained (Nagelkerke's 

R2) computed by comparison of a full model (covariates + polygenic risk scores) score to a 

reduced model (covariates only). Note that these R2 estimates are biased due to recruitment 

of the case-control studies and as the numbers of cases and controls do not reflect the 

underlying risk of disease in the population.

Rank-rank-hypergeometric overlap test (RRHO)

RRHO 
17

 tests the hypothesis that ordering of two lists (LD-pruned GWAS results for 

schizophrenia versus a brain structure phenotype) by the strength of their association is 

arbitrary. The number of independent SNPs in common between the two ordered lists is 

evaluated at specified step sizes. Two lists that show similar ordering of SNPs demonstrate a 

global pattern of similarity of associations. Independent SNPs were selected based on the 

1000 Genomes European dataset for 200 SNP windows shifted at five SNP intervals using 

an r2 threshold of 0.25. SNPs found in both PGC and ENIGMA data with MAF ≥ 0.01 were 

retained (172,652 SNPs). The SNPs were then ordered by the –log10(p-value) of association 

multiplied by the effect size. A two-sided RRHO test that allowed testing for either over- or 

under-enrichment was used with a step-size of 3000 SNPs.

Finger whorl data used as control in conjunction analysis

A GWAS of a dermatoglyphic trait (presence of a whorl on the left thumb), collected as part 

of an ongoing study at the Queensland Institute of Medical Research, 
18

 was used to provide 

a negative control for the RRHO test. Briefly, rolled ink prints were collected on archival 

quality paper, and fingerprint patterns were manually coded. Complete data from 3,314 

participants (twins and their family members) were available. Genotypes were imputed to 

the 1000 Genomes Project reference (phase 1 version 3). GWAS was conducted using 

Merlin-offline to account for relatedness and zygosity.

Lookup of top GWAS SNP findings

Evidence for an effect of the reported 128 independent schizophrenia-associated SNPs on 

subcortical brain volumes and ICV was studied through a look-up of results. rs115329265 

was not available in the ENIGMA data and was replaced by a SNP in moderate LD 
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(chr6:28305863R; r2=0.64); rs77149735 was not available in ENIGMA and could not be 

replaced by a SNP in LD. Three chrX SNPs (rs1378559, rs5937157, and rs12845396) were 

excluded, because chrX data were not available from ENIGMA. Effects of the eight 

independent SNPs associated with brain volumes reported by ENIGMA on schizophrenia 

risk were studied through a look-up of results in the PGC data.

Multiple comparison correction was performed by estimating the effective number of 

independent tests (Meff). This method considers the correlation structure (Supplementary 
Table 4) between brain measures and calculates the Meff based on the observed eigenvalue 

variance of the different brain volume measures using matSpD (see URLs). The p-value for 

significance was 0.05 divided by the sum of (a) Meff times the number of SNPs included in 

the lookup from PGC to ENIGMA (n=124), and (b) the number of SNPs included in the 

lookup from ENIGMA to PGC (n=8). Eight brain volumes resulted in seven independent 

tests, and only SNPs with a P < 5.7×10−5 were considered significant.

SNP sign test in the top GWAS findings

To investigate a potential accumulation of same or opposite direction effects of SNPs 

between PGC schizophrenia and ENIGMA, we counted the number of same direction 

effects for the top-findings from the schizophrenia dataset (94 LD-independent genome-

wide significant SNPs, 231 with P < 1×10−6) in the different brain structure datasets and 

tested the significance of the result in a binomial test (n=14 tests for 7 effective ENIGMA 

phenotypes and 2 P-value thresholds).

Conjunction analysis

To determine whether a particular SNP is linked to both brain structure and risk for 

schizophrenia, a conjunction analysis was used. 
19

 This analysis makes inference on the 

alternative hypothesis that both null hypotheses are false. This is in distinction to a 

traditional meta-analysis method which infers on an alternative hypothesis that one or more 

null hypotheses are false. A conjunction analysis is calculated as: Pconj = max(Pbrain, 

Pcase-control), where Pbrain is the significance of the SNP associated to brain structure and 

Pcase-control is the significance of the SNP association to schizophrenia. As conjunction tests 

can be very conservative, an adjustment to this test 
36

 based on the estimated fraction of 

false nulls was used here with modifications (P'conj). Over 7.5 million SNPs found in both 

the ENIGMA and PGC datasets with MAF ≥ 0.01 were evaluated.

A conjunction null hypothesis is the union of the individual null hypotheses, producing a 

‘composite null hypothesis’. In standard testing situations a “point null hypothesis” is used, 

meaning that there is exactly one configuration of the unknown parameters of interest that 

corresponds to the null. For example, “no gene-brain association, no case-control 

association” is a point null hypothesis. A composite null has multiple configurations. For 

example, both of these configurations fall into the conjunction null hypothesis: “true gene-

brain association, no case-control association”; “no gene-brain association; true case-control 

association”. A valid conjunction test has to control false positive risk over all possible 

configurations in the conjunction null. Put another way, a conjunction test has to be 
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calibrated for the worst possible configuration of true signals, and as a result can be quite 

conservative when the true state of the model is not one of the extreme cases.

The method of Deng et al. 
36

 attempts to reduce the conservativeness of the conjunction 

procedure in the multiple testing setting. The authors propose a method that estimates 

prevalence of null hypotheses in each of the individual tests being combined. With this 

information, a “relaxed” test can be constructed that is less conservative. However, a crucial 

equation in that paper is in error. The equation below provides the estimator for the 

proportion of false null hypothesis for each of the two tests to be combined. The expression 

is based on the method of Storey 
37

, who posed it as an estimate of the proportion of true 
null hypotheses. Deng et al. 

36
 apparently inverted the result incorrectly; the correct 

expression is:

In our analyses, the λ parameter in the equation above was set to 0.25.

SNP meta-analysis

We combined the association P-values of SNPs associated with schizophrenia with SNPs 

associated with the seven subcortical brain volumes and ICV from ENIGMA. Using 

METAL, 
35

 we conducted a sample size-weighted meta-analysis for schizophrenia (effective 

sample size 71,715) and ENIGMA (variable sample sizes per SNP ranging from 

8,000-11,000). SNPs were excluded if they were not present in both datasets and for MAF < 

1% (per analysis). The total number of SNPs present in the eight meta-analyses ranged from 

7,847,762 to 7,945,194.

SNP effect size comparisons

SNP effect sizes were extracted from studies of brain structure (ENIGMA), 
9
 schizophrenia 

(PGC), 
3
 height (GIANT), 

24
 and educational attainment (EduYears). 

38
 The five highest 

effect size SNPs were selected for schizophrenia and height, all genome-wide significant 

SNPs were displayed for brain structure volumes and EduYears. Percent variance was 

calculated on the liability scale for schizophrenia for comparison with quantitative traits. 
23 

For brain structures, height, and EduYears, percent variance explained was calculated as 

R2
g|c/(1-R2

c) = (t2/((n-k-1)+t2))*100, where the t-statistic is calculated as the ß-coefficient 

for a given SNP from the regression model (controlling for covariates) divided by the 

standard error of the ß-estimate, n is the total number of subjects, and k is the total number 

of covariates. 95% confidence intervals were calculated by transforming percent variance 

explained to a Z-statistic using Fisher's Z transformation, finding the 95% confidence 

intervals of the Z-statistic, and transforming this interval back into percent variance 

explained.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Summary

The authors defined a roadmap for the investigation of the genetic covariance between 

structural/functional brain phenotypes and risk for psychiatric disorders. Their proof-of-

concept study using the largest available common variant datasets for schizophrenia and 

volumes of several (mainly subcortical) brain structures did not find evidence of genetic 

overlap.
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Figure 1. 
Genetic predisposition score analyses examining the predictive capacity of ENIGMA brain 

volumetric results on schizophrenia case-control status using different P-value thresholds. X-

axis: (a) hippocampus, (b) ICV, (c) nucleus accumbens, (d) amygdala, (e) caudate nucleus, 

(f) pallidum, (g) putamen, (h) thalamus. Y-axis shows Nagelkerke's R2. Positive values 

indicate SNP effects for increasing brain structure volume and increased risk for 

schizophrenia. Negative values indicate SNP effects for decreasing brain structure volume in 

and increased risk for schizophrenia. Significance values are given in Table 2.
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Figure 2. 
Evaluating the genome-wide overlap between genetic influences on schizophrenia and 

subcortical volumes. (a) A cartoon describing the output map. (b-i) independent SNPs 

present in both ENIGMA and PGC schizophrenia results were selected independent of 

association to any phenotype (see on-line methods). Association results were ordered based 

on the significance of their association to the phenotype (–log10(P-value) multiplied by the 

sign of the effect), and statistical significance was evaluated using RRHO test. The same test 

for overlap was conducted with a (j) finger whorl phenotype, expected to have no overlap 

with brain structure genetics, and (k) the overlap between caudate and putamen volume, 

expected to have very strong overlap. Overlap in the rank-ordered lists between genetic 

variants influencing any of the eight brain phenotypes and those creating risk for 

schizophrenia was not statistically significant. The overlap between hippocampal volume 

and presence of a whorl on the left thumb was used as a negative control and showed similar 

levels of overlap to brain structure and schizophrenia.
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Table 1

SNP-heritability analyses for MRI brain volume and genetic correlations with schizophrenia
*
.

Brain region
* N Heritability SE Genetic correlation with SCZ SE Z P

Intracranial volume 9,826 0.157 0.050 −0.010 0.072 −0.137 0.891

Caudate nucleus 11,624 0.260 0.043 −0.095 0.057 −1.674 0.094

Hippocampus 11,621 0.135 0.041 −0.147 0.081 −1.826 0.068

Nucleus accumbens 11,603 0.105 0.045 −0.094 0.090 −1.051 0.293

Pallidum 11,595 0.137 0.047 −0.038 0.069 −0.546 0.585

Putamen 11,598 0.303 0.052 0.013 0.052 0.256 0.798

Thalamus 11,646 0.118 0.041 −0.113 0.087 −1.298 0.194

*
amygdala heritability was too low to allow a valid analysis
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Table 2

Two outcome variables derived from genetic predisposition analysis.

Phenotype P- R2 AUC OR (95% CI)

Intracranial volume 0.247 −2.46×10−5 0.512 0.944 ( 0.877,1.016)

Caudate nucleus 0.033 −8.35×10−5 0.502 0.928 (0.864,0.997)

Hippocampus 0.010 −1.23×10−4 0.506 0.917 (0.853,0.986)

Nucleus accumbens 0.002 −1.74 ×10−4 0.500 0.928 (0.862,0.9996)

Pallidum 0.985 6.21 ×10−9 0.513 1.034 (0.963,1.111)

Putamen 0.607 −4.87×10−6 0.515 0.971 (0.891,1.059)

Thalamus 0.221 −2.75×10−5 0.510 0.959 (0.888,1.036)

Amygdala 0.806 1.11×10−6 0.509 1.021 (0.951,1.096)

P=significance uncorrected for multiple testing. R2=correlation (Nagelkerke) on the observed scale corrected for principal components. AUC=area 
under receiver operating characteristic curve. OR=odds ratio. CI=confidence interval
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Table 3

Sign tests of directional effects among 94 genome-wide significant associations with schizophrenia 

(P<5×10−8) and the top 231 associations (P<1×10−6).

Brain region P threshold N same direction Proportion P

Intracranial volume <5×10−8 49 0.52 0.379

Caudate nucleus <5×10−8 47 0.50 0.541

Hippocampus <5×10−8 46 0.49 0.621

Nucleus accumbens <5×10−8 48 0.51 0.459

Pallidum <5×10−8 51 0.54 0.235

Putamen <5×10−8 52 0.55 0.177

Thalamus <5×10−8 49 0.52 0.379

Amygdala <5×10−8 49 0.52 0.379

Intracranial volume <1×10−6 121 0.52 0.255

Caudate nucleus <1×10−6 113 0.49 0.653

Hippocampus <1×10−6 105 0.45 0.926

Nucleus accumbens <1×10−6 109 0.47 0.821

Pallidum <1×10−6 117 0.51 0.448

Putamen <1×10−6 115 0.50 0.552

Thalamus <1×10−6 115 0.50 0.552

Amygdala <1×10−6 109 0.47 0.821

The expected proportion under the null is 0.5.
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