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Abstract

The genetic basis of Alzheimer's disease (AD) is complex and heterogeneous. Over 200 highly 

penetrant pathogenic variants in the genes APP, PSEN1 and PSEN2 cause a subset of early-onset 

familial Alzheimer's disease (EOFAD). On the other hand, susceptibility to late-onset forms of AD 

(LOAD) is indisputably associated to the ε4 allele in the gene APOE, and more recently to 

variants in more than two-dozen additional genes identified in the large-scale genome-wide 

association studies (GWAS) and meta-analyses reports. Taken together however, although the 

heritability in AD is estimated to be as high as 80%, a large proportion of the underlying genetic 

factors still remain to be elucidated. In this study we performed a systematic family-based 

genome-wide association and meta-analysis on close to 15 million imputed variants from three 

large collections of AD families (~3,500 subjects from 1,070 families). Using a multivariate 

phenotype combining affection status and onset age, meta-analysis of the association results 

revealed three single nucleotide polymorphisms (SNPs) that achieved genome-wide significance 

for association with AD risk: rs7609954 in the gene PTPRG (P-value = 3.98·10−08), rs1347297 in 

the gene OSBPL6 (P-value = 4.53·10−08), and rs1513625 near PDCL3 (P-value = 4.28·10−08). In 

addition, rs72953347 in OSBPL6 (P-value = 6.36·10−07) and two SNPs in the gene CDKAL1 
showed marginally significant association with LOAD (rs10456232, P-value: 4.76·10−07; 

rs62400067, P-value: 3.54·10−07). In summary, family-based GWAS meta-analysis of imputed 

SNPs revealed novel genomic variants in (or near) PTPRG, OSBPL6, and PDCL3 that influence 

risk for AD with genome-wide significance.

Introduction

Alzheimer disease (AD) is the most common form of senile dementia. AD is the sixth 

leading cause of death in the US with the healthcare costs surpassing $200 billion in the year 

2013, and anticipated to increase exponentially with aging population (1-3). Clinical 

symptoms are broadly characterized by a slowly progressing loss of memory and cognitive 

functions, dementia, and ultimately death. Neuropathologically, deposition of β-amyloid 

(Aβ) peptide in the form of senile ’plaques’ and oligomers (crucial to initiating AD 

pathogenesis), and accumulation of hyperphosphorlylated tau protein in the form of 
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intracellular neurofibrillary ’tangles’ (NFTs), along with inflammation and 

neurodegeneration, are the hallmark characteristics in post-mortem AD brains.

Following advancing age, family history is the second strongest risk factor in AD. 

Traditionally, AD is classified into two dichotomous forms based on the age of onset and the 

associated genetic factors. The relatively rare early-onset familial form of AD (EOFAD, 

onset age <65 years of age, <5% of diagnosed AD cases) is caused by highly penetrant, 

autosomal-dominant mutations in the three genes APP, PSEN1 and PSEN2. On the other 

hand, the more predominantly diagnosed late-onset form of AD (LOAD, onset >65 years of 

age, >95% of AD cases) shows less obvious familial aggregation. APOE-ε4 still remains the 

strongest risk factor in LOAD, where the ε4 allele confers between 3.7- and 14-fold 

increases in risk, in heterozygotes and homozygotes, respectively. Importantly, the 

identification of the four above genes were key to understanding the underlying molecular 

mechanism leading to AD - driven by Aβ oligomers, leading to the tangles formation, loss 

of neurons, neuroinflammation and dementia ("amyloidosis", (4)).

Since the first wave of genome-wide association studies beginning in 2007, more than a 

dozen GWAS and meta-analysis have been published to date, revealing several novel genetic 

loci in LOAD. Some of the genes that either encompass AD GWA SNPs or present in close 

proximity include, Triggering Receptor Expressed On Myeloid Cells 2 (TREM2), Bridging 

Integrator 1 (BIN1), Sialic Acid–binding Immunoglobulin (Ig)–like Lectin (CD33), 

Clusterin (CLU), ATP-binding Cassette Transporter (ABCA7), Complement Receptor 1 

(CR1), Phosphatidylinositol Binding Clathrin Assembly Protein (PICALM), to name a few. 

Overall, although twin and population studies estimate heritability in AD as high as 80% (5), 

all the above genetic factors taken together explain less than 50% of heritability in AD. 

Identification of the remaining genetic factors in AD will not only explain the missing 

heritability but will be vital to fully understanding the disease pathogenesis and developing 

treatment strategies.

In this study we performed a systematic meta-analysis of the family-based association test 

results using imputed genotypes (limited to MAF >0.05) generated in the subjects from three 

large Alzheimer's family collections; National Institute of Mental Health (NIMH), National 

Institute of Aging Genetics Initiative for Late Onset Alzheimer’s Disease (NIA-LOAD) and 

National Repository of Research on Alzheimer’s Disease (NCRAD). A total of 3,500 

subjects from 1,070 families were assessed in this study. To maximize statistical power to 

detect disease associated variants, we implemented a novel approach combining AD 

affection status and age of onset jointly using the multivariate extension of the FBAT-

approach (6, 7). We performed family-within component analyses and family-within and 

family-between component analyses (FBAT-GEE method), and finally the results from the 

three family-based samples were combined via meta-analysis. Meta-analysis results were 

computed separately for the two statistical approaches, (1) based on the family-within 

component analyses, and, (2) for the family-within component and family-between 

component analyses.
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Material and Methods

Study families

We utilized three large family-based AD samples in the association tests and the meta-

analyses: National Institute of Mental Health (NIMH), National Repository of Research on 

Alzheimer's Disease (NCRAD) and National Institute on Aging (NIA). The National 

Institute of Mental Health (NIMH) Alzheimer Disease Genetics Initiative Study (8), was 

originally ascertained for the study of genetic risk factors in AD in a family-based setting. 

The complete NIMH sample contains a total of 1,536 subjects from 457 families. For the 

purposes for our study 1,376 participants (941 affected and 404 unaffected) from 410 

families were included. The complete National Institute of Aging Genetics Initiative for Late 

Onset Alzheimer’s Disease Family sample and the National Cell Repository for Alzheimer’s 

Disease (NIA-LOAD) sample contains 4,006 subjects from 1,653 families. Here, we 

included 1,040 subjects (748 affected and 282 unaffected) from 329 multiplex families. The 

families originally ascertained as part of the National Repository of Research on 

Alzheimer’s Disease (NCRAD) subset of families includes 1,108 subjects from 331 

families, with 799 affected and 293 unaffected siblings. Affection status was based on 

clinical dementia diagnosis documentation according to NINCDA-ADRDA criteria. Patients 

diagnosed with mild cognitive impairment, unknown dementia, or unconfirmed family 

reports of dementia were excluded from our analysis. The initial age of detection of 

cognitive impairment in the patients was used for the age of onset phenotype. The basis for 

each cohort was the presence of at least two affected individuals within a family, typically 

siblings. All subjects are of self-reported European ancestry.

Genotyping and Imputation

DNA samples from study subjects belonging to the NIMH and NCRAD AD families were 

processed on Affymetrix Human Genome Wide SNP 6.0 arrays. Samples that failed to pass 

Affymetrix quality control (cQC), showed conflicting gender or carried large chromosomal 

abnormalities and were excluded from the study, as described in detail elsewhere (9, 10). 

The Human610-Quad array genotypes of the NIA-LOAD study samples were obtained from 

dbGAP (Genetic Consortium for Late Onset Alzheimer's Disease 6K, ID: phs000160.v1.p1). 

The quality of the array genotype data is available in the original report (11).

Before performing an association analysis of our three family cohorts, we applied standard 

GWAS quality control procedures for all three samples (NCRAD, NIA-LOAD and NIMH) 

as described here (12). SNPs and individuals were filtered for a call rate of at least 99%. In 

addition, SNPs with a minor allele frequency (MAF) of <5% were excluded. Population 

stratification within and between the samples was also checked by performing a multi-

dimensional scaling (MDS, identification of population outliers) implemented in PLINK 

(13). Duplicated DNA samples were identified by consideration of Genome-wide genotype 

identity-by-state (IBS) status (IBS > 1.98). From each pair the individual with the lower 

genotyping rate was removed. In a second step, we used IMPUTE2 (14) to impute the QCed 

datasets NCRAD and NIMH into the May 2013 release of the 1,000 Genomes Project and 

NIA into the Sep 2013 release of the 1,000 Genomes Project (15). SNPs with an info score 
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smaller than 0.4 were removed. Next, we “called” individual genotypes in the family studies 

by assigning the genotype with the highest imputation probability.

After imputing, we had a total of 43,207,737 markers from the three study cohorts, NIMH 

(n=14,129,045 markers), NCRAD (n=13,971,550), and NIA-LOAD (n=15,107,142), for 

association analysis. 273 families from NCRAD with 470 affected and 279 unaffected 

siblings, 401 families from NIMH with 905 affected and 318 unaffected siblings and 618 

families from NIA-LOAD with 1464 affected and 1096 unaffected siblings were analyzed.

Family-based Association Analyses

SNPs showing Mendelian errors were excluded from all the following analyses. In the 

presence of markers showing Mendelian errors in a pedigree, all genotypes for those 

markers with the Mendelian inconsistencies were set to zero (missing) in those pedigrees. In 

other words, markers showing Mendelian inconsistencies in a family were set to ‘missing’ in 

that specific pedigree only prior to performing association tests. To maximize statistical 

power and avoid multiple comparison problems, we used for our analyses a multivariate 

extension of the FBAT-approach (6), the FBAT-GEE (7) statistic and Van-Steen-like testing 

strategy (16, 17). FBAT-GEE, as the original FBAT, does not require any distributional 

assumptions for the phenotypes and it tests different trait types simultaneously. Assuming 

that m traits for each offspring that we want to test simultaneously by the FBAT approach, 

we denote the vector containing all m observations for each offspring by Yij = (Yij1, …, 
Yijm), where Yijk is the kth phenotype for the jth offspring in the family. The multivariate 

FBAT-GEE statistic is constructed by replacing the univariate coding variable Tij in C by the 

coding vector defined by (18)

where, the ’s are the predicted trait values based on the regression model for covariates. 

Replacing univariate coding variable Tij in FBAT statistic by the vector Tij results in the 

FBAT-GEE statistic

Under the null hypothesis, the FBAT-GEE statistic has a Χ2 distribution with m degrees of 

freedom.

In our case the FBAT-GEE statistic contains affection status and time to onset as phenotypes, 

coded as Wilcoxon statistic. A more detailed description can be found in the original article 

(7).
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The analyses were divided in two steps: the family-within components and the family-within 

and family-between components approach (17, 19). The family-within component is a 

genetic association tests that is based on Mendelian transmissions, where as the family-

between component is a population-based association analysis in which the genotypes are 

replaced by the expected genotyped conditional on the sufficient statistic, i.e. the conditional 

mean model (19). The advantage of the within-family component is that it is robust against 

population stratification. However, the between-family component remains sensitive against 

population stratification and requires further adjustment (20). Therefore, several statistical 

techniques proposed to use both approaches (16). After performing within-family analysis 

(FBAT-GEE) and between-family analysis (conditional mean model), the results from the 

two family analyses are combined via meta-analysis, in which the FBAT P-value is used for 

the within family-analysis and a rank-based P-value for the between-family-analysis (16). 

The rank-based P-values for the conditional mean model ensure maximal efficiency and, at 

the same time, maintain the robustness against population stratification of the overall 

approach.

In the meta-analyses that was performed with METAL (21), the P-values across our studies 

NCRAD (n=7,432,385 variants), NIMH (n=7,346,118) and NIA-LOAD (n=7,556,673) were 

summarized and also the sample size and direction of effect were taking into account. First, 

a meta-analysis for the family-within component analysis (1) was performed for our three 

samples, second for the family-within component and family-between component analysis 

(2).

To check if our top SNPs are in linkage disequilibrium (LD) with a gene we used the 

software package epigwas (22). For each SNP, the SNPs in a 1M window (upstream 500K, 

and downstream 500K) are included in the calculation. The tool calculates LD using 1000 

genome data for the EUR population. Only SNPs with r2 greater than 0.5 are shown in the 

results section.

Results

The results of our two meta-analyses (1): FBAT-GEE results for the family-within 

component analysis and (2): FBAT-GEE for the family-within and family-between 

component analysis) are shown in Table 1. We present SNPs exhibiting family-based 

association with AD with P-value <10−06, a minor allele frequency (MAF) >0.05, and with 

the same effect direction in each family sample. The complete list of SNPs with P-values 

>10−05 are listed in the supplementary tables; Supplementary Table 3a and Supplementary 

Table 3b.

The APOE region (rs56131196) shows highly significant results (P-values of 3.09·10−24, 

and 3.96·10−24 for approaches (1) and (2), respectively; 187 SNPs <0.05 for approach (1) 

and 283 SNPs for approach (2). The three EOFAD genes (APP, PSEN1, and PSEN2) harbor 

several SNPs with nominally significant association with AD. In the FBAT-GEE results for 

the family-within component analysis, the most strongly associated SNP in the APP region 

(among 47 SNPs with P-value <0.05) is rs190685835 (P-value = 3.74·10−03). For the PSEN1 
region, there are 61 SNPs with P-value <0.05 (rs3025774: P-value = 0.02775); for the 

Herold et al. Page 6

Mol Psychiatry. Author manuscript; available in PMC 2016 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



PSEN2 region, 15 SNPs <0.05, (rs182226938 has a P-value = 2.23·10−03). Looking at the 

FBAT-GEE results for the family-within component and the family-between components the 

number of nominal significant SNPs is increased. The APP region has 452 SNPs <0.05 

(rs141145244 P-value = 1.9·10−04; the PSEN1 region has 311 SNPs <0.05 (rs214277 P-

value = 1.07·10−04) and the PSEN2 region with 87 SNPs <0.05 (rs149734051 P-value = 

1.06·10−03). This is in concordance with previous GWAS in AD, where variants in the three 

early-onset familial AD genes failed to show consistent genome-wide significant association 

with AD.

The results of our two meta-analysis approaches are shown in Table 1 (Panel A & B). We 

found 32 novel variants showing genome-wide significant association with AD and fulfilling 

the criteria described above, that is, P-value <10−06, MAF >5% and same effect direction 

across all samples tested. Detailed information can be found in Table Supp-1. 15 variants 

were either in a gene (Table 1, Panel A) or in LD with SNPs in a gene, while 18 other SNPs 

(Table 1, Panel B) were in proximity of a known gene. Three variants reached genome-wide 

significance in at least one of the four meta-analysis: rs7609954 (PTPRG): P-value = 

3.98·10−08; rs1513625 (PDCL3): P-value = 4.28·10−08; rs1347297 (OSBPL6): P-value = 

4.53·10−08. A second SNP, rs72953347 in OSBPL6 also showed marginally significant 

evidence for association with AD using the other meta-analysis approach (approach 2): P = 

6.36·10−07). In addition, two SNPs in the gene, CDKAL1, showed marginally significant 

evidence for association with AD in the two different testing meta-analysis approaches 

(rs62400067: P-value = 3.54·10−07; rs10456232: P-value = 9.60·10−07).

We next tested the 32 SNPs from Table 1 (Both, Panel A and Panel B) showing GW-

significant association with AD using family-based methods in the IGAP case-control 

dataset (Supplementary Table 4). SNPs showing association with AD in the family-based 

studies do not consistently replicate in case-control data, and vice-versa. As seen in previous 

reports (reviewed elsewhere (23) none of our top 32 SNPs from Table 1 showed genome-

wide significance (with the exception of APOE SNPs) in the IGAP case-control GWAS 

dataset (24).

Discussion

We carried out a family-based genome-wide association and meta-analysis on roughly 15 

million imputed variants using three large AD family samples (~3,500 subjects from 1,070 

families). We employed a multivariate phenotype combining affection status and onset age 

and then performed meta-analysis of the association results. Three SNPs: one in PTPRG 
(rs7609954), one in OSBPL6 (rs1347297) and another near PDCL3 revealed genome-wide 

association with AD in the meta-analysis. Additionally, another SNP, rs72953347 in 

OSBPL6 (P-value = 6.36·10−07) and two SNPs (rs10456232, rs62400067) in the gene 

CDKAL1 showed marginally significant association with AD.

OSBPL6 encodes a member of the oxysterol-binding protein (OSBP) family, a group of 

intracellular lipid receptors. This gene adds to a growing number of other cholesterol-related 

genes implicated in AD genetics, e.g. APOE and ABCA7. Differential gene expression 

studies have previously implicated OSBPL6 in Niemann-Pick Type C Disease, Parkinson 
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disease and AD (25-27). The precise pathogenic mechanism still remains unclear but it is 

speculated that OSBPL6 may affect cognition decline through cholesterol mediated 

pathways (28). PTPRG encodes a member of the protein tyrosine phosphatase (PTP) family, 

known to function as signaling molecules that regulate cell growth, differentiation, mitotic 

cycle, and oncogenic transformation. PDCL3 encodes phosphoducin-like 3, which is 

believed to modulate heterotrimeric G-proteins via binding to beta and gamma subunits of 

G-proteins. It has also been proposed to play a role in angiogenesis by serving as a 

chaperone for the VEGF receptor, KDR/VEGFR2 and regulating its ubiquitination and 

degradation (29). PDCL3 has also been proposed to modulate caspase activation by 

interacting with the inhibitor of apoptosis (IAP) (30). CDKAL1 encodes the 

methylthiotransferase family member, cyclin-dependent kinase 5 (CDK5) Regulatory 

Subunit Associated protein-Like 1, and has been previously associated with noninsulin-

dependent diabetes mellitus. Interestingly, CDK5 has also been implicated in AD tangle 

pathology (31).

The most significant results of our meta-analysis in family-based GWAS studies differ from 

those of the published meta-analyses of large-scale case/control studies. In addition, while 

many of the top hits from IGAP (24) are also significantly associated with AD and age-at-

onset of AD in our family-based meta-analysis (Supplementary Table 4), they do not achieve 

genome significance in our family-based association analyses. This observation can most 

likely be attributed to the fact that different types of association tests were used across these 

studies, i.e. population-based association tests vs family-based association tests, which 

require the presence of both linkage and association. Given that the family-based tests 

combine the evidence of both, linkage and association, the p-values in both meta-analyses 

may vary for each SNP and the same p-value ranking cannot be expected. This lack of 

replication is not uncommon in the GWAS of complex human traits and often attributed to 

several other factors, including, insufficient statistical power, population stratification, 

differences in genetic ancestry and age-dependent genetic effects, to name a few (32). While 

the case-control method is the most common study design due to ease of sample 

ascertainment, the main concern is the population stratification effects, most notable in the 

SNPs present in the region involved with natural selection (33). On the other hand, family-

based studies are more robust against population admixture and stratification that allows 

both linkage and association testing (34, 35), but may lack power due to small number of 

families present in the studies. The analytic approaches used in most studies address these 

pitfalls of the two study designs, and allowing for these caveats, both types of designs yield 

useful and complementary information (36). In this study, another important factor is that in 

order to maximize power, our family-based meta-analysis used a multi-variate phenotype 

combining AD and age-at-onset of AD, while the meta-analysis of case/control design tested 

for AD without taking age-at-onset into account (24).

The use of a multi-variate phenotype may also explain why our top meta-analysis 

association findings do not replicate in IGAP (24), as the meta-analysis of case/control 

studies does not incorporate the age-at-onset information. However, the most important 

factor that contributes to the non-replication in IGAP may be the adjustment for population 

substructure. The case/control studies use principal component approaches which works 

well to adjust for global genetic stratification, but cannot account for local genetic 
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stratification. The FBAT-based meta-analysis is robust against any genetic confounding, 

global and local. Any type of locus-specific stratification therefore could bias a principal-

component based association analysis and therefore result in undetected, true genetic 

association, which could be the case here.

In summary, using close to 15 million imputed variants we performed a systematic family-

based genome-wide association and meta-analyses using a multivariate phenotype 

combining affection status and onset age in three large collections of AD families. The meta-

analysis of the association results revealed three SNPs that show genome-wide significance 

for association with AD risk in the genes PTPRG and OSBPL6, and near PDCL3 gene. One 

of our top genes, OSBPL6 has previously been implicated in AD in the transcriptomic 

studies of the post-mortem brains. Further studies will be required to replicate these novel 

findings and to elucidate the pathophysiologic role of these AD-associated genes and 

variants in the etiology and pathogenesis of AD.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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