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Abstract

Late-onset Alzheimer disease (LOAD) has a complex genetic etiology, involving locus 

heterogeneity, polygenic inheritance and gene-gene interactions; however, the investigation of 

interactions in recent GWAS has been limited. We used a biological knowledge-driven approach 

to evaluate gene-gene interactions for consistency across thirteen datasets from the Alzheimer 

Disease Genetics Consortium. Fifteen SNP-SNP pairs within three gene-gene combinations were 

identified: SIRT1 x ABCB1, PSAP x PEBP4, and GRIN2B x ADRA1A. Additionally, we extend a 

previously identified interaction from an endophenotype analysis between RYR3 x CACNA1C. 

Finally, post hoc gene expression analyses of the implicated SNPs further implicate SIRT1 and 

ABCB1, and implicate CDH23 which was most recently identified as an AD risk locus in an 

epigenetic analysis of AD. The observed interactions in this manuscript highlight ways in which 

genotypic variation related to disease may depend on the genetic context in which it occurs. 

Further, our results highlight the utility of evaluating genetic interactions to explain additional 

variance in AD risk and identify novel molecular mechanisms of AD pathogenesis.

Keywords

gene-gene interactions; epistasis; Alzheimer disease; Biofilter

INTRODUCTION

Alzheimer disease (AD) has a strong yet complex genetic etiology and has already 

demonstrated allelic and locus heterogeneity and polygenic inheritance. It is possible that 

additional complexity, including gene-gene interactions, is also involved in the etiology of 

AD. Although rare mutations in multiple genes can affect early onset AD, only common 

variation in APOE has a large effect on the more common late onset form of AD (LOAD). 

Recent genome-wide association studies in LOAD have identified up to 21 additional novel 

genetic loci for AD, including genes from multiple pathways, such as beta-amyloid 

processing and clearance, calcium signaling and extracellular matrix (Naj et al., 2011; 

Lambert et al., 2013). Other than APOE, the identified genetic loci have very modest effects, 

and in total the known genetic influences in LOAD still explain only about 33% of the 

broad-sense heritability (Ridge, Mukherjee, Crane, & Kauwe, 2013), which has been 

estimated to be 60–80% (Gatz, Reynolds, & Fratiglioni, 2006; So, Gui, Cherny, & Sham, 

2011). One possible source of additional heritability is gene-gene interactions. Known loci 

could further influence disease risk through interactions with each other, as well as with 

other as yet unknown genetic factors. Also, novel loci with no detectable independent main 

effect on LOAD risk could interact with each other to significantly increase risk.

To date, the investigation of gene-gene interactions in LOAD has been pursued almost 

exclusively using a hypothesis-driven, candidate gene approach. Arosio et al. (2004) 

reported an interaction between variants in the pro-inflammatory cytokine genes IL6 and 

IL10, and Mateo et al. (2006) reported an interaction between the dopamine beta-

hydroxylase gene (DBH) and each of the two cytokine genes IL1A and IL6 (Arosio et al., 

2004; Mateo et al., 2006). The Epistasis Project was able to replicate both of these findings 

in LOAD (Combarros et al., 2010). Interactions between variants in the transferrin gene 
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(TF) and the hemochromatosis gene (HFE) also have been identified and replicated in 

multiple cohorts for association with LOAD (Robson et al., 2004; Kauwe et al., 2010). An 

interaction between the insulin gene (INS) and the peroxisome proliferator-activated 

receptor alpha gene (PPARα) has been reported in Northern but not Southern Europeans 

(Kolsch et al., 2012; Heun et al., 2012). Risk for LOAD and vascular dementia reportedly 

vary according to the interaction of genotypes in the MTHFR and IL6 genes (Mansoori et al., 

2012).

Even in hypothesis-free genome-wide association studies (GWAS) of Alzheimer’s disease, 

when testing of gene-gene interactions has been incorporated, it has been restricted to 

interactions between APOE and other risk loci with known main effect associations. Belbin 

et al. (2011) investigated interactions among 21 LOAD candidate and confirmed risk genes, 

including APOE, BIN1, CLU, CR1 and PICALM but failed to detect any interactions with 

disease status or age-at-onset that were significant after correction for multiple testing 

(Belbin et al., 2011). Similarly, Carrasquillo et al. (2011) failed to identify significant 

interactions between variants in BIN1 and other LOAD risk genes, including APOE, CLU, 

CR1 and PICALM (Carrasquillo et al., 2011).

In this study, we aimed to identify novel gene-gene interactions that demonstrated 

association with LOAD across multiple independent datasets. We used a network-based 

approach to discovery, utilizing prior biological knowledge about LOAD candidate genes—

the pathways in which they participate and the genes with which they are related or are 

known to interact—to guide initial selection of gene-gene models for investigation (Bush, 

Dudek, & Ritchie, 2009). We also utilized a meta-analysis approach by which we could 

evaluate the consistency of each identified SNP x SNP interaction across the thirteen 

independent data sources while correcting for the total number of comparisons evaluated. 

Finally, we performed a comprehensive analysis of two gene-gene pairs that were previously 

identified in projects by our research group leveraging endophenotypes of Alzheimer’s 

disease in order to validate the observed effects in case-control datasets.

MATERIALS AND METHODS

Datasets and Quality Control Procedures

Study data consisted of subjects from thirteen datasets available through the Alzheimer’s 

Disease Genetics Consortium (ADGC), including: the Adult Changes in Thought (ACT); the 

National Institute on Aging Alzheimer Disease Centers (ADC1, ADC2, ADC3); the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI); Oregon Health & Science University 

(OHSU); Rush University Religious Orders Study/Memory and Aging Project (ROSMAP); 

Translational Genomics Research Institute series 2 (TGEN2); University of Miami/

Vanderbilt University/Mt.Sinai School of Medicine (UM/VU/MMSM); and Washington 

University (WashU). All subjects were recruited under protocols approved by the 

appropriate Institutional Review Boards.

After quality control, the combined dataset included samples from 7,758 LOAD cases and 

6,724 cognitively normal elder (CNE) controls. For most of the cohorts, LOAD cases met 

NINCDS-ADRDA criteria for probable or definite LOAD with age at onset greater than 60 
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years, and clinically-defined CNEs had a documented MMSE, CASI or 3MS score in the 

normal range. The only exceptions were TGEN2 and ADNI. The TGEN2 dataset comprised 

clinically- and neuropathologically-characterized brain donors, 668 with LOAD and 365 

CNEs without dementia or significant LOAD pathology. The samples were obtained from 

21 different National Institute on Aging-support LOAD Center brain banks and from the 

Miami Brain Bank as previously described (Reiman et al., 2007; Liang et al., 2011; Caselli 

et al., 2007; Webster et al., 2009). Additional samples from other brain banks in the United 

States, United Kingdom and the Netherlands were obtained in the same manner. The 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset comprised 268 LOAD cases 

and 173 CNEs with neuroimaging support for diagnosis. In the ADNI cohort, LOAD 

subjects were between the ages of 55–90 years old, had an MMSE score of 20–26 inclusive, 

met NINCDS/ADRDA criteria for probable LOAD (McKhann et al., 1984), and had an MRI 

consistent with the diagnosis of LOAD at the most recent follow-up. Table 1 presents 

descriptive statistics for each of the datasets.

Genotyping

Samples were genotyped at different stages of recruitment on the Affymetrix 6 (UM/VU/

MSSM), Affymetrix 1M (TGEN2), Illumina 610 (ADNI, OHSU, UM/VU/MSSM), Illumina 

660 (ACT, ADC1, ADC2, WashU), Illumina OmniExpress (ADC3), and Illumina IM 

(ROSMAP, UM/VU/MSSM). Each dataset was independently imputed using IMPUTE2 

with 1000 Genomes Phase 2 samples of European ancestry. Since we were primarily 

interested in discovering novel gene-gene interactions and not those that modify risk of the 

major LOAD gene, APOE, we excluded SNPs within 50kb of APOE.

Quality Control Procedures

Quality control procedures were applied to each dataset separately. Genotype data were 

cleaned by applying a 98% threshold for genotyping efficiency and a minimum minor allele 

frequency of 0.10. SNPs not in Hardy-Weinberg equilibrium in controls (P < 10−6) were 

excluded. Subjects for whom reported and genetic sex were inconsistent were identified by 

analysis of X-chromosome SNPs using PLINK (Purcell et al., 2007) and were excluded 

from further analysis.

Statistical Analysis

We used a biological knowledge-driven approach (Biofilter; Bush et al., 2009) to select 

SNP-SNP models with a priori evidence that their genes or protein products interact or 

participate in common biological pathways or processes. Biofilter 2.0 merges information 

from 13 independently curated annotation databases, including dbSNP, NCBI Entrez Gene, 

BioGRID, Molecular Interaction database (MINT), PharmGKB, Gene Ontology (GO), 

Kyoto Encyclopedia of Genes and Genomes (KEGG), Reactome, NetPath, Protein Family 

database (Pfam), ORegAnno, UCSC and the NHGRI GWAS Catalog, into one Library of 

Knowledge Integration (LOKI) database (Pendergrass et al., 2013). Biofilter will accept a 

candidate gene list and then create a network of gene-gene combinations for which there are 

at least two LOKI sources suggesting the genes are related or are likely to interact in some 

manner (e.g., at the protein-protein or biological pathway level). Biofilter will also take as 
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input the list of genetic variants available in the dataset to be analyzed and will map these 

variants to genes in the network it built based on strict gene boundaries, a specified distance 

on either side of the gene boundaries, or the structure of linkage disequilibrium around 

genes. We chose to map variants to all genes within 50kb of the gene boundaries.

In our analysis, we began by selecting all genes previously implicated in AD genetic 

association studies. From these sources we identified 1,297 genes. We then used Biofilter to 

reduce the list down to genes within networks whose edges had an implication index of at 

least two for further investigation. This left a total of 825 genes (see Supplementary Table 

1), comprising 43,376 SNPs.

We analyzed each SNP-SNP pair for interaction effects related to risk for LOAD using an 

additive encoding of alleles. We utilized the INTERSNP software (http://intersnp.meb.uni-

bonn.de/) for genome-wide interaction analysis to test for the significance of the additive 

interaction term in a logistic regression model (Herold, Steffens, Brockschmidt, Baur, & 

Becker, 2009). To evaluate the results of this large number of tests, we used a multiple step 

procedure. First, because it was not computationally feasible to print out all pairs analyzed, 

we generated a list of the most significant 100,000 SNP-SNP interactions for each dataset. 

Second, we removed intragenic SNP-SNP pairs where the SNPs were annotated to the same 

gene. Third, we removed those pairs for which there were less than three observations in the 

lowest SNP x SNP contingency table cell, which could lead to spurious associations. That is, 

if there were fewer than three individuals with a given genotype combination in the 3×3 

genotype matrix, we would remove that SNP-SNP pair from the analysis. Finally, we then 

performed a meta-analysis on the remaining 1,191,392 SNP-SNP pairs across all thirteen 

datasets.

Our correction for multiple comparisons was based on the effective number of independent 

SNP-SNP pairs evaluated. There were 43,376 SNPs selected for analysis after applying 

Biofilter. By accounting for linkage disequilibrium using the standard approach in PLINK 

(--indep 50 5 2) with a Variance Inflation Factor (VIF) of 2 (r2 > 0.5), we determined there 

were approximately 3,626 independent loci, comprising 6,541,638 independent, intergenic 

SNP-SNP interactions evaluated. Therefore, when applying the Bonferroni procedure, our 

threshold for statistical significance was set to α = 7.64 × 10−9. Additionally, in order to be 

considered statistically significant, a given SNP-SNP pair had to be present (and available 

for testing and subsequent meta-analysis) in at least six out of thirteen datasets and could not 

demonstrate evidence of heterogeneity across data sources (heterogeneity p-value > 0.05). 

Post hoc analyses adjusting for age, sex, and population principal components were also 

performed to ensure that these potential confounding factors were not driving any observed 

association. Finally, we report all SNP x SNP interactions as ‘suggestive’ that passed a less 

conservative correction accounting for the total number of pairs analyzed in the meta-

analysis (α = 4.20 × 10–8). These interaction results may warrant future investigation and are 

reported in our supplemental materials.

Validation of Genetic Interactions Identified using Endophenotypes of AD

Previous work from our group leveraging amyloid imaging and brain volume data from 

ADNI identified two gene-gene interactions: RYR3 x CACNA1C (Koran, Hohman, & 
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Thornton-Wells, 2014) and SYNJ2 x PIK4A (Koran, Hohman, Meda, & Thornton-Wells, 

2014). The SNP selection procedure and coding for those previous analyses differed 

significantly from the procedure implemented in the present analysis, however we wanted to 

fully evaluate whether these gene interactions are associated with case-control status. We 

selected all SNPs within these genes from the genome browser database (http://

genome.ucsc.edu/cgi-bin/hgGateway) and used the same statistical approach outlined above, 

except we used a dominant allele coding to align with the previous analyses. In the case of 

the CACNA1C x RYR3 interaction analysis, we identified 1,800 SNPs across the two genes 

after applying the same genotype filtering outlined above with the exception that we used a 

minor allele frequency (MAF) filter of 0.05 and a dominant encoding to be consistent with 

the previously reported analyses. We included all covariates mentioned above in our 

analysis. After accounting for linkage disequilibrium (VIF = 2) there were approximately 

10,086 independent, intergenic SNP-SNP combinations evaluated (Bonferroni corrected α = 

5 × 10−6). In the case of the SYNJ2 x PIK4A analysis, we identified 620 SNPs across the two 

genes. After accounting for linkage disequilibrium, there were approximately 2,112 

independent, intergenic SNP-SNP combinations evaluated (Bonferroni corrected α = 2.37 × 

10−5).

Post hoc Expression Quantitative Trait Loci (eQTL) Analysis

We leveraged the genotype tissue expression (GTEx; http://www.gtexportal.org/home/) 

project database, the seeQTL expression quantitative trait loci (eQTL) searchable database 

of human expression QTLs (http://www.bios.unc.edu/research/genomic_software/seeQTL/), 

and publically available gene expression data from the ROS/MAP dataset calculated from 

prefrontal cortex tissue and made available through the Accelerating Medicines Partnership 

AD project (https://www.synapse.org/#!Synapse:syn2580853/wiki/). These sources were 

used to assess cis eQTLs for genes proximal to the implicated SNP. At the time of analysis, 

there were 13 tissues available in GTEx and 2 tissues available in the see QTL database in 

addition to the prefrontal cortex sample available through AMP-AD. Therefore, we 

corrected all eQTL p-values for the number of tissues evaluated using the Bonferroni 

procedure (Bonferroni corrected α = 0.003). Finally, we used the AMP-AD data to 

determine whether the observed genes were differentially expressed in the prefrontal cortex 

of AD cases v. controls when covarying for age and sex.

RESULTS

After removing intragenic SNP pairs and pairs with low contingency cell counts, a total of 

1,191,392 pairs were analyzed in a meta-analysis across the thirteen datasets. Ten SNP-SNP 

combinations within the sirtuin 1 (SIRT1) and ATP-binding cassette sub-family B (MDR/

TAP), member 1 (ABCB1) loci remained statistically significant when correcting for 

multiple comparisons. When adjusting for age, sex, and population PCs, three additional 

SNP-SNP pairs within the phosphatidylethanolamine-binding protein 4 (PEBP4) and the 

prosaposin (PSAP) loci, and one additional SNP-SNP pair within the glutamate receptor, 

ionotropic, N-methyl D-aspartate 2B (GRIN2B) and the adrenoceptor alpha 1A (ADRA1A) 

loci reached statistical significance. The most significant SNP-SNP pairs within these loci 

are presented in Table 2 and are described in greater detail below. All SNP-SNP 
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combinations and their main effects are reported in Supplementary Table 2. An additional 

68 SNP-SNP pairs and the annotated genes are also included in Supplementary Table 2 as 

results suggestive of (but not reaching) significance. The most significant SNP-SNP pair 

within the SIRT1 x ABCB1 interaction was between rs34104788 and rs4728700 (OR=1.36, 

p=2.7×10−9) and was present in 9 out of the 13 datasets.

The forest plot for this SNP-SNP pair is presented in Figure 1 and the Manhattan plot is 

presented in Figure 2 using Locus Zoom (Pruim et al., 2010). The most significant SNP-

SNP pair within the PEBP4 x PSAP interaction was between rs2466176 and rs762571 

(OR=1.25, p=1.1×10−9) and was present in 12 out of 13 datasets (Figure 3). The most 

significant SNP-SNP pair within the GRIN2B x ADRA1A interaction was between rs564830 

and rs1805474 (OR=0.77, p=6.67×10−9) and was present in 10 out of 13 datasets (Figure 4).

Validation of Genetic Interactions Identified using Endophenotypes of AD

In our validation analyses, we observed a statistically significant association between 4 

SNP-SNP pairs in the RYR3 and CACNA1C genes when correcting for multiple comparisons 

(Supplementary Table 3); however we did not observe any effects in the SYNJ2 x PIK4A 

gene pair when correcting for multiple comparisons.

Post Hoc Expression Quantitative Trait Loci Analysis

We observed statistically significant associations between rs4728700 and ABCB1 in skeletal 

tissue (p =0.002), rs762571 and CDH23 in monocytes (p=1×10−63), and rs2466176 and 

uncharacterized LOC101929237 in prefrontal cortex tissue (p=7×10−11). Although we did 

not observe an eQTL association for rs34104788, we did observe another SNP in weak LD 

with that one (rs11596401, r2 = 0.33, D′=1) as an eQTL in monocytes (p=1×10−9). We did 

not observe eQTL associations for rs1805474 or rs564830. In case-control expression 

analyses, GRIN2B was not available in the AMP-AD dataset, so we corrected for the 6 genes 

evaluated (including CDH23 from the eQTL results above). When correcting for multiple 

comparisons, CDH23 showed significantly elevated expression in AD relative to controls 

(p=0.0002). A nominal elevation was observed for SIRT1 (p=0.02) and a nominal reduction 

was observed for PEBP4 (p=0.03) and PSAP (p=0.03).

DISCUSSION

Using a biological knowledge-driven approach, we were able to identify SNP-SNP 

interactions that showed a consistent signal across multiple independent data sources. The 

15 SNP-SNP pairs identified were within three gene-gene combinations. Below we 

summarize the possible relevance of these gene pairs to Alzheimer’s disease risk and 

progression. We also provide validation of a previously identified genetic interaction 

between RYR3 and CACNA1C, highlighting the utility of leveraging endophenotypes of AD 

in smaller datasets and reemphasizing the important role of calcium homeostasis in the 

pathogenesis of AD.

The interaction between intronic SNPs within SIRT1 and ABCB1 appears to modify AD risk 

through alterations in amyloid clearance. SIRT1 has been shown to suppress amyloid-beta 

production (Donmez, Wang, Cohen, & Guarente, 2010). It has been suggested that this 
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suppression occurs through modulations in the production of α-secretase, which may also be 

the mechanism by which caloric restriction relates to AD resilience in model systems (Qin et 

al., 2006). ABCB1 on the other hand, plays a crucial role in Aβ clearance (Kuhnke et al., 

2007). It is highly expressed at the blood brain barrier and transports Aβ out of the brain and 

into the bloodstream (Elali & Rivest, 2013). However, a recent study failed to show an 

association between ABCB1 polymorphisms and CSF levels of Aβ-42, suggesting that 

variance in this gene alone is unlikely to account for substantial variation in AD risk (Kohen 

et al., 2011). What is more interesting is the potential interaction between these genes. 

Activation of SIRT1 increases the expression of ABCB1 in cancer cell lines, leading to an 

increased drug efflux (Wang & Chen, 2013). Similarly, activation of SIRT1 in AD brains 

may promote amyloid clearance through increased expression of ABCB1 at the blood brain 

barrier. Thus, the rather modest effect of genetic variation in either of these genes, perhaps 

associated with a moderate reduction in amyloid risk, may be multiplicative when genetic 

variation in both genes results in a substantial increase in Aβ clearance. The post hoc gene 

expression analysis suggests that the observed association is, indeed, likely acting through 

SIRT1 and ABCB1. However, additional functional work is needed to validate the suggestive 

results reported herein.

The interaction between intronic SNPs within PSAP and PEBP4 is particularly interesting 

when considering the results of the post hoc expression analysis. Rs762571 appears to be a 

strong cis-eQTL for cadherin-related 23 which encodes a calcium dependent cell adhesion 

glycoprotein involved in sterocilia organization. It is not surprising, therefore, that CDH23 

has been implicated in hearing loss and Usher syndrome (Kowalski, Pawelczyk, Rajkowska, 

Dudarewicz, & Sliwinska-Kowalska, 2014; Miyagawa, Nishio, & Usami, 2012; Nakanishi 

et al., 2010). Interesting, methylation signals within the CDH23 loci have been implicated in 

AD previously (Lord & Cruchaga, 2014), although the potential mechanism remains 

somewhat unclear. Epithelial cadherin (encoded by CDH1) has been shown to bind to 

presenilin-1, which ultimately regulates cadherin function and cell-cell adhesion (Baki et al., 

2001). Similarly, neural cadherin has been implicated in amyloid-β release via an interaction 

with presenilin-1. However, it is unclear whether the implicated CDH23 effect acts through 

a comparable amyloid pathway. The SNP within PEBP4 is a strong eQTL suggesting a 

potential functional role; however, the eQTL is for an overlapping uncharacterized locus 

(LOC101929237), which is a long non-coding antisense RNA within the PEBP4 locus. This 

SNP also showed a modest association with PEBP4 in the prefrontal cortex (p=0.01) in the 

same direction as that observed with LOC101929237, but ultimately it is unclear whether 

the observed association with AD is driven by PEBP4 directly, by PEBP4 through 

LOC101929237, or by a different locus regulated by LOC101929237.

The final observed interaction between intronic SNPs within GRINB2 and ADRA1A were 

not supported by cis-eQTL results, leaving open the possibility that these SNPs may be 

acting through other genes. However, both of these genes have some potential relevance to 

AD. GRIN2B has been implicated in AD previously and is thought to act through alterations 

in NMDA receptor activity (Andreoli et al., 2014). The alpha(1)-adrenoceptor has been 

shown to prevent memory deficits in transgenic mouse models (Katsouri et al., 2013). 

Relevant to the observed interaction, there also appears to be a synergistic effect of NMDA 
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receptors and the alpha(1)-adrenoceptors on spatial navigation performance, leaving open 

the possibility that the observed association between GRIN2B and ADRA1A is driven by 

downstream alterations in NMDA and adrenoceptor activity relevant to the amyloid cascade 

(Riekkinen, Stefanski, Kuitunen, & Riekkinen, 1996). However, future functional analysis is 

warranted to further investigate this pathway.

Validation of Previously Identified Interactions

This study leveraged data from thirteen independent datasets and a knowledge-based 

variable selection technique to identify biologically plausible genetic interactions. Previous 

work in our lab has used a comparable approach to identify genetic interactions in relation to 

specific endophenotypes of Alzheimer’s disease (Koran, Hohman, Meda, & Thornton-

Wells, 2014; Koran et al., 2014), and here we successfully validated the previously 

identified RYR3-CACNA1C interaction in relation to AD. As previously concluded, it 

appears that genes along the amyloid-calcium axis interact to confer risk for AD.

It is interesting that we did not observe interactions among the previously identified AD 

GWAS SNPs even though they were included in our analyses. Previous work in our lab 

focusing specifically on the ten most significant SNPs identified in AD GWAS studies 

found very weak interaction effects in relation to amyloid deposition (Hohman, Koran, & 

Thornton-Wells, 2013). The present results provide additional evidence that genetic 

interactions among previously identified AD loci are unlikely to account for additional 

variance in AD risk. However, our results also suggest that genetic interactions exist within 

the pathways identified by previously reported risk loci. Future work performing full 

genome wide interaction analyses may shed additional light on this topic and clarify whether 

genetic interactions in other pathways confer additional risk.

The meta-analysis technique applied in the current analysis sought to balance statistical 

power with the desire for replication; however analyzing all thirteen datasets individually 

did reduce power to detect interaction effects in some of the smaller data sets such as 

OHSU, ADNI, and WASHU. Moreover, this approach limited our ability to evaluate less 

frequent variants given the low expected cell counts in contingency tables for variants with a 

MAF < 0.10 in these smaller data sources. While the meta-analysis approach gives us 

confidence in our observed interaction effects, follow-up analyses further replicating these 

interactions and evaluating the functional role of the SNPs involved will be necessary in 

order to better understand the mechanism of these interactions.

The results of this project provide additional evidence that genetic interactions likely explain 

some of the missing heritability in AD. However, given the small effect sizes observed, 

comparable to those of single marker analyses, it seems unlikely that interactions can 

explain all of the missing heritability. Future work will seek to perform full genome-wide 

interaction analyses to better understand the breadth of interaction effects in AD.

In conclusion, using a biological knowledge-driven approach aimed at identifying consistent 

SNP x SNP interactions across thirteen independent datasets, we were able to identify a 

number of gene-gene models with biologically plausible mechanisms of action. These 

models build on the substantial literature on common variants associated with AD, and 
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highlight the potential utility of applying large scale genetic interaction models to better 

understand disease risk and progression.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• We use a biologically-driven, network-based approach for interaction analysis

• We conduct a meta-analysis of SNP interactions across thirteen ADGC datasets

• We identify 15 significant SNP interactions across three gene pairs

• Genetic interactions explain variability in AD risk beyond single variant effects

Hohman et al. Page 15

Neurobiol Aging. Author manuscript; available in PMC 2017 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Each dataset is presented along the Y-axis, and the odds ratio is presented along the y-axis. 

For each dataset, the square represents the odds ratio and the confidence band represents the 

95% confidence interval around the odds ratio. The fixed effects odds ratio is presented as a 

diamond at the bottom of the graph. The width of the diamond represents the 95% 

confidence interval of the fixed effects odds ratio.
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Figure 2. 
This figure provides the interaction p-value for the SNP-SNP pairs between SIRT1 (panel 

A) and ABCB1 (panel B) that were meta-analyzed in the final step of the interaction 

analysis. Each point in panel A has a corresponding point in panel B, as each point 

represents a single SNP-SNP interaction across these genes. The chromosome position is 

presented along the x-axis. The –log10 p-value is presented along the Y axis. Points are 

colored by their linkage disequilibrium to the most significant SNP in the gene.

Hohman et al. Page 17

Neurobiol Aging. Author manuscript; available in PMC 2017 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Each dataset is presented along the x-axis, and the odds ratio is presented along the y-axis. 

For each dataset, the square represents the odds ratio and the confidence band represents the 

95% confidence interval around the odds ratio. The fixed effects odds ratio is presented as a 

diamond at the bottom of the graph. The width of the diamond represents the 95% 

confidence interval of the fixed effects odds ratio.

Hohman et al. Page 18

Neurobiol Aging. Author manuscript; available in PMC 2017 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Each dataset is presented along the x-axis, and the odds ratio is presented along the y-axis. 

For each dataset, the square represents the odds ratio and the confidence band represents the 

95% confidence interval around the odds ratio. The fixed effects odds ratio is presented as a 

diamond at the bottom of the graph. The width of the diamond represents the 95% 

confidence interval of the fixed effects odds ratio.
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