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Abstract

Background: Alzheimer’s disease (AD) is a neurodegenerative disease that causes
dementia. While molecular basis of AD is not fully understood, genetic factors are
expected to participate in the development and progression of the disease. Our
goal was to uncover novel genetic underpinnings of Alzheimer’s disease with a
bioinformatics approach that accounts for tissue specificity.

Findings: We performed genome-wide association studies (GWAS) for hippocampal
volume in two Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohorts. We used
these GWAS in a subsequent tissue-specific network-wide association study (NetWAS),
which applied nominally significant associations in the initial GWAS to identify disease
relevant patterns in a functional network for the hippocampus. We compared
prioritized gene lists from NetWAS and GWAS with literature curated AD-associated
genes from the Online Mendelian Inheritance in Man (OMIM) database. In the ADNI-1
GWAS, where we also observed an enrichment of low p-values, NetWAS prioritized
disease-gene associations in accordance with OMIM annotations. This was not
observed in the ADNI-2 dataset. We provide source code to replicate these analyses as
well as complete results under permissive licenses.

Conclusions: We performed the first analysis of hippocampal volume using NetWAS,
which uses machine learning algorithms applied to tissue-specific functional interaction
network to prioritize GWAS results. Our findings support the idea that tissue-specific
networks may provide helpful context for understanding the etiology of common
human diseases and reveal challenges that network-based approaches encounter
in some datasets. Our source code and intermediate results files can facilitate
the development of methods to address these challenges.

Findings
Alzheimer’s disease (AD) is a neurodegenerative disease that affects memory and be-

havior. Around 70 % of the risk is expected to be attributable to genetics [1]. Including

the well documented association with the gene APOE, previous studies have identified

22 susceptibility loci for late-onset Alzheimer’s disease (LOAD), of which 11 were

recently reported by a large meta-analysis [2]. Most existing genetic analyses lack the
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affected tissue context, which is crucial to the precise actions of genes, though some

eQTL analyses have begun to address this problem. For example, analysis of

eQTLs in brain samples from control individuals and those with LOAD identified

variants associated with changes in gene expression in the brain [3].

To identify genes that play a tissue-specific role in disease, we used the recently

developed network-wide association study (NetWAS) method, which takes the tissue-

specific functional roles of genes into account, to identify genes associated with differ-

ences in hippocampal volume [4]. We applied the NetWAS approach to genome-wide

association study (GWAS) results from ADNI using hippocampal volume as an endo-

phenotype. NetWAS identifies features in the hippocampus tissue-specific network that

are associated with nominally significant GWAS p-values, and it uses these features to

identify potentially novel AD gene associations. We evaluated the extent to which the

NetWAS approach using a hippocampus network could identify AD-associated genes

and compared results to the GWAS alone.

Data

Data used in this study were obtained from the Alzheimer’s Disease Neuroimaging

Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 by the

National Institute on Aging (NIA), the National Institute of Biomedical Imaging and

Bioengineering (NIBIB), the Food and Drug Administration (FDA), private pharmaceutical

companies and non-profit organizations, as a $60 million, 5-year public-private partnership.

The primary goal of ADNI has been to test whether serial magnetic resonance imaging

(MRI), positron emission tomography (PET), other biological markers, and clinical and

neuropsychological assessment can be combined to measure the progression of mild cogni-

tive impairment (MCI) and early AD. Determination of sensitive and specific markers of

very early AD progression is critical to aid researchers and clinicians to develop new treat-

ments and monitor their effectiveness, and to reduce the time and cost of clinical trials.

The Principal Investigator of this initiative is Michael W. Weiner, MD, VA Medical

Center and University of California - San Francisco. ADNI is the result of efforts of

many co-investigators from a broad range of academic institutions and private corpora-

tions, and subjects have been recruited from over 50 sites across the U.S. and Canada.

The initial goal of ADNI was to recruit 800 subjects but ADNI has been followed by

ADNI-GO and ADNI-2. To date these three protocols have recruited over 1,500 adults,

ages 55 to 90, to participate in the research, consisting of cognitively normal older indi-

viduals, people with early or late MCI (EMCI or LMCI), and people with early AD. The

follow up duration of each group is specified in the protocols for ADNI-1, ADNI-2 and

ADNI-GO. Subjects originally recruited for ADNI-1 and ADNI-GO had the option to

be followed in ADNI-2. Thousands of longitudinal imaging scans [5, 6], performance

on neuropsychological and clinical assessments [7] and biological samples [8] were

collected at baseline and at follow-up visits for all or a subset of participants.

Genome-wide genotyping data [9] are available on the full ADNI sample. For up-

to-date information, see www.adni-info.org.

Genotype data of all participants from both ADNI-1 and ADNI-2 were downloaded,

quality controlled, imputed to the Illumina 610Quad platform and combined, following

the procedure described in [10]. Freesurfer version 5.1 was used to extract hippocampal

volume and intracranial volume (ICV) measures from the 1.5 T baseline MRI scans of
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the ADNI-1 participants, and from the 3 T baseline MRI scans of the ADNI-2 partici-

pants, as previously described in [11]. Siblings and participants without hippocam-

pal volume were excluded. As a result, we included 748 subjects and 817 subjects

in the ADNI-1 and ADNI-2 analyses, respectively. GWAS analyses were performed

by PLINK v1.07 using a linear regression model covaried for age, gender, education

and ICV.

The analytic workflow

Our analytical workflow was designed to identify genes associated with differences in

hippocampal volume. Figure 1 provides an overview of our analytical strategy. To en-

sure reproducibility, we have used methods that are available from webservers and

open source software packages to ensure accessibility of this analysis for other re-

searchers. Because we performed a large number of NetWAS to evaluate the robustness

of results, the actual analyses were performed on a computing cluster. We provide our

source code and intermediate results under permissive licenses. The goal of phase I

was to calculate gene-based association p-values based on SNP association p-values

from the hippocampal volume GWAS. The goals of phase II were to reprioritize gene-

based associations using hippocampus functional network and to assess the concord-

ance of identified disease-gene associations with documented associations.

Phase I: gene-level analysis

We applied the versatile gene-based association study (VEGAS) webserver to calculate

gene-based p-values from individual SNP p-values, described in the data section above,

for associations with hippocampal volume endpoint [12]. VEGAS assigns SNPs to indi-

vidual genes using a window of 50 kb upstream and downstream from the gene se-

quence and generates a combined test-statistic that accounts for linkage disequilibrium
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Fig. 1 An overview of our analysis. In phase I, we mapped SNPs from the GWAS studies to genes and
calculated gene-based p-values from SNP p-values. In phase II, we focused on using hippocampus network
to reprioritize these genes. The efficacy of this approach was assessed with documented associations with
AD. NetWAS results from different cohorts were integrated using an average-score approach and assessed
for concordance with documented AD associations
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(LD). The ADNI data we used were restricted to non-Hispanic Caucasian participants

[10], so we used the HapMap CEU population for LD. This stage of analysis provided

us with gene candidates associated with the hippocampal volume endpoint from

the GWAS.

Phase II: tissue-specific functional network analysis

The gene-based p-values calculated in phase I were used as input for a NetWAS

analysis. NetWAS reprioritizes disease-gene associations using a functional network by

constructing a support vector machine classifier using nominally significant genes

(p < 0.01) as positive examples and non-associated genes as negative examples. The

resulting classifier, which learned patterns in the biological network associated with

nominal significance, was then applied back to the network to re-rank genes [4].

We performed NetWAS on the DISCOVERY supercomputer at Dartmouth. To

evaluate the stability of predictions and estimate the variance of multiple NetWAS

runs, we performed 1000 iterations of each analysis with randomly selected cross-

validation intervals. To evaluate potential underlying bias in the method towards

OMIM annotations, we also performed NetWAS on 1000 different GWAS for each co-

hort in which the associated genes had been permuted. Source code and intermediate

and final results for these analyses are provided under permissive open source licenses

[13] (code: BSD 3-clause; data: CC0).

The ultimate goal of this analysis was to use information about the tissue-specific

functions and relationships of genes to identify disease-associated genes more effectively

than GWAS. We mapped OMIM [14] annotations onto the Disease Ontology (DO) [15].

To assess the performance of this approach for this phenotype, we used the area under the

receiver-operator characteristic curve (AUC) to compare NetWAS, permuted NetWAS

and GWAS gene rankings. AUCs were calculated using annotations that were mapped to

the DO term for Alzheimer’s disease (DOID:10652) as gold standard positives.

Results and discussion
Using VEGAS, in phase I of the analysis we converted SNP-level association statistics

from two different ADNI studies into two sets of gene-level association statistics for

the hippocampal volume phenotype. These statistical associations were reprioritized in

phase II using NetWAS analyses that leveraged a functional network for the hippocam-

pus performed across 1000 independent sets of five-fold cross validation. To generate

an aggregate list, we summed the ranks for each NetWAS. Tabular complete results for

each of these analyses are available in the source code repository associated with this

paper (ADNI-1 VEGAS: data/vegas_adni1.xls; ADNI-2 VEGAS: data/vegas_adni2.xls;

NetWAS ADNI-1 and ADNI-2: combined-results.csv).

The underlying idea of NetWAS is that multiple truly associated genes may exhibit

nominal, though not genome-wide, significance, which a machine learning method

could use to extract phenotype-associated network features. Because NetWAS was

developed to identify network commonalities among nominally associated genes, we

generated quantile-quantile plots of observed VEGAS gene-wise p-values against a

uniform distribution. ADNI-1 showed slight inflation, suggesting that this GWAS

might represent a good NetWAS candidate (Additional file 1: Figure S1). ADNI-2 did

not show evidence of inflation (Additional file 2: Figure S2).

Song et al. BioData Mining  (2016) 9:3 Page 4 of 8



We compared the GWAS ranked and NetWAS reprioritized genes to genes with a

documented association with Alzheimer’s disease in the OMIM database using the

AUC (Fig. 2). Comparing the GWAS against the 95 % confidence intervals, we found

that the NetWAS ranking more closely matched genes with a documented relationship

to AD than genes identified by the initial VEGAS analysis in the ADNI-1 cohort. In the

ADNI-2 cohort, this relationship was reversed but less pronounced. In both cases, the

scores for the NetWAS performed using the GWAS associations were outside of and

above the 95 % bootstrap confidence intervals for the mean of NetWAS with permuted

gene-significance.

We noted that in the NetWAS results generated from ADNI-1 GWAS, the top 14

genes all belonged to the protocadherin alpha gene cluster (PCDHA). This unusual re-

sult had not previously been observed in a NetWAS analysis, so we investigated both

network-based and association-based explanations. Examination of p-values from

VEGAS revealed multiple significant PCDHA genes (PCDHA1-13, PCDHAC1, PCDHAC2).

These associations could be driven by the same variants within the overall 50 kb window,

Fig. 2 Network reprioritization of AD GWAS identifies AD-associated genes. GWAS ranked and NetWAS
reprioritized genes are assessed for correspondence to genes known to be associated with Alzheimer’s
disease. We compared ADNI-1 and ADNI-2 to DO-annotated AD genes using AUC. The AUC for NetWAS in
ADNI-1 was significantly higher than that observed for the GWAS or the permuted NetWAS. The AUC
for NetWAS in ADNI-2 was significantly higher than the permuted NetWAS. Error bars indicate 95 %
confidence intervals via bootstrap
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as the PCDHA gene cluster includes multiple overlapping genes (Fig. 3). In the case that

these genes are from the same family, as with PCDHA genes, they may also have similar

network connectivity patterns, making it difficult for NetWAS to distinguish whether one

or all members of the gene family should be most closely associated with the disease. The

multiple associated genes by VEGAS also make it difficult for NetWAS to successfully dis-

tinguish involved members. These properties can, in certain circumstances, make it difficult

to pinpoint the principally associated gene. This multiple-mapping problem has previously

been reported to have impact on gene-set based analysis [16]. Our analysis demonstrates

that users should also be cognizant of this for network-based approaches. Gene-based asso-

ciation tests that attempt to control for SNPs with potential associations with multiple

genes may be required to address this challenge.

While a 50 kb window can lead to multi-gene mapping, it can also fail to capture

long-range interactions between SNPs and genes. For example, SNPs 500 kb from the

gene c-MYC were found to directly interact with the promoter of c-MYC, upregulating

the expression of this gene [17]. Such relationships cannot be captured by existing

gene-based association tests without creating additional multiple-mapping challenges.

Fig. 3 Significant SNP-wise p-values overlap with the entire PCDHA cluster. The Manhattan plot on the top
shows p-values of the SNPs in the PCDHA region. The genome view at the bottom indicates where the genes
are located in the genome. The overlap between significant SNPs and all PCDHA genes (PCDHA1-13) potentially
explains the significant associations for all genes in this family so that they are largely identified by NetWAS
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Gene-based association tests that account for potential long-range interactions through

both haplotype structures and 3D chromosomal organization information would help

to ameliorate this problem.

In summary, we have performed the first NetWAS for hippocampal volume, or any

AD-related phenotype, in AD patients and controls using the ADNI-1 and ADNI-2

cohorts. In the course of this analysis, we identified the need for new gene-based asso-

ciation tests that aim to solve multiple-mapping challenges for SNP-gene relationships.
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Additional file 1: Quantile-quantile plot showing the deviation of the distribution of p-values in the ADNI-1
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associations captured by the GWAS. (PDF 73 kb)

Additional file 2: Quantile-quantile plot showing the deviation of the distribution of p-values in the ADNI-2
dataset from the uniform expected under the null. We did not observe inflation of p-values for the ADNI-2 dataset.
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