
RESEARCH Open Access

Genome-wide association study of
prolactin levels in blood plasma and
cerebrospinal fluid
Lyndsay A. Staley1†, Mark T. W. Ebbert1†, Sheradyn Parker1, Matthew Bailey2, for the Alzheimer’s Disease
Neuroimaging Initiative, Perry G. Ridge1, Alison M. Goate3 and John S. K. Kauwe1*

From 12th Annual Biotechnology and Bioinformatics Symposium (BIOT-2015)
Provo, UT, USA. 10-11 December 2015

Abstract

Background: Prolactin is a polypeptide hormone secreted by the anterior pituitary gland that plays an essential
role in lactation, tissue growth, and suppressing apoptosis to increase cell survival. Prolactin serves as a key player in
many life-critical processes, including immune system and reproduction. Prolactin is also found in multiple fluids
throughout the body, including plasma and cerebrospinal fluid (CSF).

Methods: In this study, we measured prolactin levels in both plasma and CSF, and performed a genome-wide
association study. We then performed meta-analyses using METAL with a significance threshold of p < 5 × 10−8

and removed SNPs where the direction of the effect was different between the two datasets.

Results: We identified 12 SNPs associated with increased prolactin levels in both biological fluids.

Conclusions: Our efforts will help researchers understand how prolactin is regulated in both CSF and plasma,
which could be beneficial in research for the immune system and reproduction.
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Background
Prolactin, a hormone mostly secreted from the lacto-
troph cells within the anterior pituitary gland [1] and
expressed by the PRL gene, plays an important role in
milk lactation for pregnant women [1], helps regulate
the menstrual cycle, and also affects reproduction, me-
tabolism, homeostasis, tissue growth, osmoregulation,
immunoregulation, and behavior [2, 3]. Prolactin levels
are regulated in a short-loop feedback mechanism by
prolactin inhibitory factors (PIF), dopamine being an im-
portant example [4]. This feedback system changes dur-
ing pregnancy, and prolactinomas, hypothyroidism,
medications, stress, exercise, herbs, and certain foods
can also affect prolactin levels [5, 6]. Prolactin has also

been shown to suppress apoptosis, and increase survival
and function of cells, including T-lymphocytes [7].
Cerebrospinal fluid (CSF) and plasma separated by the

blood–brain barrier and levels of expression in these
biological fluids are often independent, suggesting the
genes are regulated independently across tissues on ei-
ther side of the blood–brain barrier [8]. Currently, little
is known about genetic markers that affect prolactin ex-
pression in plasma or CSF. In this study we conducted a
genome-wide association study of prolactin levels in the
CSF and in the plasma of individuals from two datasets,
looking for SNPs that are associated with prolactin levels
in both CSF and plasma. Further research of the variants
we identified will help researchers further understand
how prolactin is regulated across multiple tissues in the
human body and how it affects human health.* Correspondence: Kauwe@byu.edu
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Methods
Subjects and data description
CSF and plasma samples were collected from the
Knight-Alzheimer’s Disease Research Center at Washington
University School of Medicine (Knight ADRC) and from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI). In
this study, we used 297 CSF and 347 plasma samples from
ADNI, and 246 CSF and 240 plasma samples from Knight
ADRC. The majority of the samples were controls, although
7 % of Knight ADRC samples were Alzheimer’s disease
cases, and 15 % of ADNI samples were AD cases. Levels for
190 biomarkers were measured for each sample using the
Human DiscoveryMAP Panel v1.0 and a Luminex 100 plat-
form [9] and the samples were genotyped using the Illu-
mina 610 or the Omniexpress chip. A description of the
collection methods and the Knight ADRC samples has been
previously published [10, 11] and the ADNI samples were
collected as part of the ADNI biomarker study [12], and
were obtained from the ADNI database (adni.loni.usc.edu).
All samples were of European descent, and varied in age
from 58 to 91 years, with an average age of 76 years, for the
ADNI samples, and varied in age from 49 to 91 years, with
an average age of 73 years, for the Knight ADRC samples.
All individuals whose data were included in this study were
explicitly consented, following appropriate Institutional
Review Board policies.

SNP imputation
SNPs were imputed as previously described [13]. Beagle
was used to impute SNPs from the data from the 1000
Genomes Project (June 2012 release). Imputed SNPs
with the following criteria were removed: (1) an r2 of 0.3 or
lower, (2) a minor allele frequency (MAF) lower than 0.05

(3) out of Hardy-Weinberg equilibrium (p < 1 × 10 − 6), (4)
a call rate lower than 95 %, or (5) a Gprobs score lower
than 0.90. Exactly 5,815,690 SNPs passed the QC process.

Data cleaning and analysis
We conducted analyses using PLINK [14], a whole gen-
ome association analysis toolset. We excluded SNPs that
exceeded thresholds for Hardy-Weinberg Equilibrium
[15, 16] (–hwe 0.00001), missing genotype rate (–geno
0.05), and minor allele frequency (–maf 0.01) on the
Knight ADRC and ADNI datasets. Then, we excluded
individuals with a missing genotype rate greater than
2 % (–mind 0.02).
With the cleaned data, we conducted a linear regres-

sion for all remaining SNPs, within each data set, to test
for an association with prolactin levels, adjusting for age,
gender, and the first two principle components gener-
ated using EigenSoft [17, 18]. We then performed a
meta-analysis across ADNI and Knight ADRC for CSF
and another meta-analysis across ADNI and Knight
ADRC for plasma, each accounting for sample size,
p-values, and direction of effect using the default
METAL [19] settings.
We retained all SNPs that had a meta-analysis p-value

less than 5 × 10−8 and that had the same direction of ef-
fect in both the Knight ADRC and ADNI datasets, in
both resulting meta-analysis files. We then looked for
SNPs that were replicated in both the significant CSF
and plasma meta-analysis resulting files. We searched
for these SNPs in the NHGRI catalog of published
genome-wide association studies [20]. (downloaded
October 12th, 2015) for known disease associations. We
then used RegulomeDB [21] and functional annotations

Table 1 Significant SNPs were scattered across chromosomes 2, 6, 7, 8 and 17, with the majority of the SNPs being on chromosome
6. These 12 SNPs were all significant in both the blood plasma and CSF. Information on the SNPs includes chromosome, reference
and alternate allele, minor allele frequency, predicted function, the gene the SNP is found in or near, RegulomeDB score, and the
meta-analysis p-values for plasma and CSF

SNP Chr Base Pair
Position

Major
Allele

Minor
Allele

MAF Predicted
Function

Gene RegulomeDB
score

Meta-analysis p-value

Plasma CSF

rs12548348 8 70430077 A G 0.1222 Intronic SULF1 No Data 6.288e-11 9.841e-26

rs13408093 2 62251682 A T 0.0699 Intronic TRIB2 5 6.881e-10 2.119e-25

rs1150703 6 28184260 G T 0.0919 ncRNA_exonic TOB2P1 5 3.276e-09 7.011e-26

rs988083 6 28177588 C T 0.1220 Intergenic ZNF192P1,TOB2P1 5 3.276e-09 7.011e-26

rs988084 6 28177492 C T 0.1218 Intergenic ZNF192P1,TOB2P1 6 3.276e-09 7.011e-26

rs73726888 7 15021811 T C 0.0893 UTR3 GIMAP7 6 4.209e-09 6.438e-24

rs8073041 17 47498253 T A 0.0731 Intergenic PHB,LOC101927207 6 7.87e-09 2.169e-10

rs1150701 6 28183886 A C 0.1410 ncRNA_exonic TOB2P1 6 1.184e-08 1.443e-26

rs1150702 6 28184097 A T 0.1410 ncRNA_exonic TOB2P1 5 1.184e-08 1.443e-26

rs1233712 6 28193131 G A 0.1406 UTR5 ZSCAN9 4 1.184e-08 1.443e-26

rs79268972 17 47531241 T G 0.0749 Intergenic PHB,LOC101927207 5 2.547e-08 8.169e-12

rs77482998 7 47532356 T C 0.0665 Intronic TNS3 5 4.608e-08 7.983e-12
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from wAnnovar [22, 23] to identify SNPs that are bio-
logically likely to modify gene function or expression.
RegulomeDB scores range from “1a” to “6”. Lower scores
indicate stronger evidence that the SNP affects gene

regulation based on both empirical data, such as ChIP-
seq, and whether the SNP is within a known transcription
factor binding motif. We generated regional association
plots using SNAP [24] for regions of interest and explored

Fig. 1 PathwayCommons output showing the gene that codes for prolactin along with the major players SULF1 and TRIB2. Our significant SNPs,
rs12548348 and rs13408093, fall in SULF1 and TRIB2, respectively. This means that although none of the SNPs fall directly in or near PRL, they
could still be affecting the prolactin pathway because they are regulated by some of the same transcription factors
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whether any genes of interest are part of the same path-
way or regulatory network using PathwayCommons [25].
For SNPs where linkage disequilibrium data is unknown
in SNAP, we modified the SNAP source code to plot
all SNPs in the region regardless of linkage disequilib-
rium status and omit r2 values. By default, SNAP only
plots SNPs with a known r2 greater than 0. We also
generated q-q plots in R to check for evidence of
inflation of p-values.

Results
We identified 37 SNPs associated with prolactin levels in
plasma and 666 SNPs associated with prolactin levels in
CSF (Additional files 1 and 2), none of which are located
in or around the PRL gene. Significant SNPs were spread
across 21 chromosomes for the CSF results and across
10 different chromosomes for the plasma results. There
are several hits on chromosome 6, but all are more than
5 million base pairs away from where the PRL gene is
located. There were 12 SNPs in common between the
plasma and CSF results (Table 1), 6 of which were on
chromosome 6, approximately 6 million base pairs away

from the PRL gene. RegulomeDB scores for the 12 SNPs
ranged from 4 to 6 and MAFs ranged from 0.06 to 0.14.
None of the 12 SNPs were found in the NHGRI catalog
of published genome-wide association studies. The q-q
plots demonstrated no evidence of inflation (genomic in-
flation factor = 1.0; Additional files 3 and 4). According
to PathwayCommons, PRL, SULF1, and TRIB2 are all
regulated by some of the same transcription factors
(Fig. 1) including PBX1, XBP1, TCF3, LEF1, VSX1,
PITX2, and LHX3. There were no other known relation-
ships among the genes identified in this study.

Discussion
Twelve SNPs were significantly associated with prolactin
levels in both plasma and CSF, 6 are located on chromo-
some 6 and the remaining 6 SNPs are scattered across
chromosomes 2, 7, 8, and 17. The 6 SNPs on chromo-
some 6 cluster in and around ZSCAN9, TOB2P1, and
ZNF192P1, according to Annovar, though visualizing the
SNPs’ locations in the NCBI viewer shows that 3 of the
6 SNPs fall within a ZSCAN9 intron for one specific
transcript (XM_011514877.1) as well as within TOB2P1—a
pseudogene that falls within the same intronic region of

Fig. 2 Regional association plot generated using SNAP showing rs1150703 has the strongest association with prolactin plasma levels of the SNPs
found in this region of chromosome 6. We identified several SNPs associated with prolactin levels in the plasma and plotted association p-values
in the region. We omitted r2 values in this plot because SNAP does not have linkage disequilibrium data for this SNP
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ZSCAN9. SNP rs1233712 is in the 5′UTR region of
ZSCAN9. SNPs rs988083 and rs988084 are between
ZNF192P1 and TOB2P1, according to Annovar. ZNF192P1
is also a pseudogene that is proximal to ZSCAN8. In short,
all 6 SNPs on chromosome 6 are located in or around
ZSCAN8 and ZSCAN9, both of which are protein-coding
genes, while 3 of the 6 fall directly within a pseudogene
(TOB2P1). Of the significant SNPs on chromosome 6,
rs1150703 was most significantly correlated with prolactin
levels in plasma (Fig. 2) while rs1150701 was most signifi-
cantly correlated with prolactin levels in CSF (Fig. 3).
The remaining 6 SNPs are located on chromosomes 2,

7, 8, and 17, where 2 of the SNPs are intergenic, 3 are
intronic, and one is located in a 3′UTR region (Table 1).
SNP rs12548348 is an intronic SNP within the SULF1
gene on chromosome 8 and was most significantly asso-
ciated with prolactin levels in plasma out of the 12
found in common between the two fluids. It was also
one of most significantly associated with prolactin levels
in CSF. SNPs rs13408093 and rs77482998 are intronic
SNPs within the TRIB2 (chromosome 2) and TNS3
(chromosome 7) genes, respectively. SNPs rs8073041
and rs79268972 are intergenic SNPs that are both

located on chromosome 17 between the gene PHB and a
non-coding RNA LOC101927207. The next closest
protein-coding gene is NGFR. SNP rs73726888 is located
in the 3′UTR region of GIMAP7 on chromosome 7.
While rs77482998 (TNS3) and rs73726888 (GIMAP7)
are both located on chromosome 7, they are distant
from each other on opposite arms of the chromosome,
suggesting their associations with prolactin levels are in-
dependent of each other.
While there is no direct evidence that any of these

markers directly impact prolactin expression, it appears
that PRL, SULF1, and TRIB2 in that they are all regu-
lated by common transcription factors, including PBX1,
XBP1, TCF3, LEF1, VSX1, PITX2, and LHX3. It is pos-
sible that these genes and variants are involved in PRL
regulation through more complex biological relation-
ships. This may be significant because genes regulated
by the same transcription factor are often active in the
same tissues at the same time [26, 27].

Conclusions
In summary, we have identified significant and replicable
association between several genetic variants in both

Fig. 3 Regional association plot generated using SNAP showing rs1150701 has the strongest association with prolactin CSF levels of the SNPs
found in this region of chromosome 6. We identified several SNPs associated with prolactin levels in the CSF and plotted association p-values in
the region. We omitted r2 values in this plot because SNAP does not have linkage disequilibrium data for this SNP
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plasma and CSF levels of prolactin. These results pro-
vide a foundation for a better understanding of prolactin
regulation, and in turn the host of phenotypes in which
prolactin plays a role, including lactation, immunoregu-
lation, apoptosis and T-lymphocyte function [1–3, 7].
Future work on these associated markers will provide
meaningful insights into these phenotypes.

Additional files

Additional file 1: File contains a table of SNPs significantly associated
with prolactin levels in blood plasma by meta-analysis. (DOCX 130 kb)

Additional file 2: File contains a table of SNPs significantly associated
with prolactin levels in CSF by meta-analysis. (DOCX 183 kb)

Additional file 3: File contains a Q-Q plot of the plasma data used in
this study. (DOCX 74 kb)

Additional file 4: File contains a Q-Q plot of the CSF data used in this
study. (DOCX 76 kb)
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