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Effect of CLU genetic variants 
on cerebrospinal fluid and 
neuroimaging markers in healthy, 
mild cognitive impairment and 
Alzheimer’s disease cohorts
Lin Tan1,*, Hui-Fu Wang2,*, Meng-Shan Tan3, Chen-Chen Tan3, Xi-Chen Zhu2, Dan Miao3,  
Wan-Jiang Yu4, Teng Jiang5, Lan Tan1,2,3 , Jin-Tai Yu2 &  Alzheimer’s Disease Neuroimaging 
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The Clusterin (CLU) gene, also known as apolipoprotein J (ApoJ), is currently the third most associated 
late-onset Alzheimer’s disease (LOAD) risk gene. However, little was known about the possible effect 
of CLU genetic variants on AD pathology in brain. Here, we evaluated the interaction between 7 
CLU SNPs (covering 95% of genetic variations) and the role of CLU in β-amyloid (Aβ) deposition, AD-
related structure atrophy, abnormal glucose metabolism on neuroimaging and CSF markers to clarify 
the possible approach by that CLU impacts AD. Finally, four loci (rs11136000, rs1532278, rs2279590, 
rs7982) showed significant associations with the Aβ deposition at the baseline level while genotypes 
of rs9331888 (P = 0.042) increased Aβ deposition. Besides, rs9331888 was significantly associated with 
baseline volume of left hippocampus (P = 0.014). We then further validated the association with Aβ 
deposition in the AD, mild cognitive impairment (MCI), normal control (NC) sub-groups. The results in 
sub-groups confirmed the association between CLU genotypes and Aβ deposition further. Our findings 
revealed that CLU genotypes could probably modulate the cerebral the Aβ loads on imaging and volume 
of hippocampus. These findings raise the possibility that the biological effects of CLU may be relatively 
confined to neuroimaging trait and hence may offer clues to AD.

Alzheimer’s disease (AD) is the most common form of dementia in the elderly, accounting for 50% of all  
dementia1. It has been documented that genetic factors, along with environments, extremely contributes to 
the pathogenesis of AD2,3. Clusterin gene (CLU), also known as apolipoprotein J (ApoJ), is currently the third 
most associated risk gene according to Alzgene database (http://www.alzgene.org/). It is located in chromosome 
8p21–p12 which is a chromosomal region of interest in AD4 and it may explain around 9% of the late-onset AD 
(LOAD) attributable risk5,6. Many large genome-wide association studies (GWAS) have identified that rs2279590, 
rs11136000, rs9331888, rs7012010, rs7982 and rs1532278 in CLU was substantially associated with AD risk in 
individuals of Caucasian ancestry and other populations7–11. Several independent candidate gene studies have 
then replicated and confirmed these results in various Caucasian populations or other populations, although the 
strongest associated variant sometimes differed12–23. Our group previously reported that rs9331949 and rs9331888 
variation in the CLU gene played significant role in sporadic LOAD in the Han Chinese population24–27.

Regarding to the mechanisms how the CLU gene polymorphism induce the risk for AD, efforts to identify 
functional variations through exon sequencing and examining effects of SNPs on CLU expression in brain tis-
sue have not yet provided a functional link between the associated polymorphisms and AD28, such as is seen in 
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ApoE29. To date, the risk allele of the AD-associated SNP rs9331888, associated with the alternative splicing of 
CLU gene30, increases the relative abundance of transcript NM_203339. Coincidently, the results of our previ-
ous study also revealed that the AD risk rs9331888 allele was associated with a decrease in CLU plasma levels27. 
Another risk allele of the AD-associated SNP rs11136000 was significantly associated with lower clusterin plasma 
levels in an allele-dose-dependent manner31,32. It also modified CSF levels of the microtubule-associated protein 
tau and decreased Aβ (1-42) in AD patients33,34. For more than two decades, the “amyloid hypothesis” has been 
the leading scientific explanation for AD35. Convincing evidence suggests that the physical interaction of clus-
terin with amyloid β  (Aβ ) plays an important role in AD pathogenesis28. Briefly, these evidences supported that 
CLU polymorphisms could modulate AD susceptibility by altering Aβ  accumulation in the current literature. To 
date, as florbetapir 18F amyloid PET and CSF Aβ 1-42 are reported to reflect the brain amyloid burden with high 
specificity36,37, multiple neuroimaging measures, along with CSF proteins (Aβ 1-42 and tau) could be proposed as 
critical markers in biological research and clinical trials in AD pathophysiological process38. Intriguingly, these 
neuroimaging methods are likely to be shaped by genetic influences with heritability39.

From the above evidence, it is possible that CLU genetic variations mediate the susceptibility of AD by alter-
ing the biomarkers of Aβ  accumulation (including low Aβ 42 in CSF and abnormal Aβ  deposition on imaging) 
and the neuronal degeneration biomarkers. The evidence that AD susceptible gene could affect neuroimaging 
and CSF markers would further confirm the roles of these genetic factors in AD. To ascertain whether CLU 
polymorphisms mediate the susceptibility of AD by altering the biomarkers of Aβ  accumulation and neuronal 
degeneration biomarkers, we genotyped CLU polymorphisms and explored their associations with AD specific 
brain structures and functions on imaging and CSF to investigate the mechanism.

Results
Demographics. The dataset comprised of 812 individuals, including 281 normal controls (NC), 483 mild 
cognitive impairment (MCI) and 48 AD at baseline. The demographics and the clinical data were summarized 
in Supplementary Table S1 while the SNP distributions were in Table 1. No statistical differences were observed 
among NC, MCI and AD patients when comparing the distribution of all the tested SNPs allele frequencies in 
our study.

Impacts of CLU genotypes on Aβ deposition. In this study we compared the levels of tracer retention 
in frontal, parietal, temporal cortex and cingulate, as well as summary florbetapir standard uptake value ratios 
(SUVRs) among three different allelotypes in each locus at baseline. We analyzed them in the whole group and 
then validated significant loci in the three different clinical stages (AD, MCI, and NC). The AV-45 retention 
on amyloid PET imaging represented the Aβ  deposition. Thus we measured Aβ  deposition in brain to test the 
relationships between CLU genotypes and levels of tracer retention on amyloid PET imaging. We investigated 
the relationship between the Aβ  deposition and the seven loci in multiple linear regression analysis (Fig. 1A, 
Supplementary Table S2 and S3). Finally, four loci (rs11136000, rs1532278, rs2279590, rs7982) showed signifi-
cant associations with the Aβ  deposition at the baseline level of all the subjects (Table 2). Among the SNPs, three 
genotypes of rs11136000 (P =  0.030) (Fig. 1B), rs1532278 (P =  0.039) (Fig. 1C), rs2279590 (P =  0.030) (Fig. 1D) 
and rs7982 (P =  0.030) (Fig. 1E) were significantly associated with tracer retention in summary SUVR while 
genotypes of rs9331888 (P =  0.042) increased tracer retention in summary SUVR (Fig. 1F). Besides, three gen-
otypes of rs2279590 decreased tracer retention in cingulate (P =  0.035) (Fig. 1G) and frontal cortex (P =  0.037) 
(Fig. 1H). Three genotypes of rs7982 decreased tracer retention in frontal cortex (P =  0.037) as well (Fig. 1I). 
Moreover, we performed linkage disequilibrium (LD) analysis and discovered that rs7982, rs11136000, rs1532278 
and rs9331888 were in LD (Supplementary Figure S1). In the haplotype-based analysis, the haplotypes (GCCG, 

SNP Position
Minor 
allele

MAF H-W (p value) Previous studied articles 
(PMID)All AD MCI NC All AD MCI NC

rs2279590 intron variant T 0.379 0.365 0.375 0.39 0.221 0.638 0.534 0.444
[22015308], [20599866], 
[19734903], [21300948], 

[20697030]

rs11136000 intron variant T 0.395 0.344 0.391 0.411 0.140 0.500 0.524 0.254

[21460841], [25189118], 
[25496871], [19734903] 
[20697030], [24806679], 
[24670887], [24117116], 
[23892938], [23650005], 
[23643458], [22722634], 
[22015308], [19734902]

rs9331888
intron variant, nc 
transcript variant, 
upstream variant

G 0.275 0.362 0.274 0.263 0.966 0.350 0.330 0.073 [22258514], [22122982],  
[20599866], [21892414]

rs7012010 nc transcript variant C 0.306 0.271 0.318 0.292 0.945 0.932 0.381 0.437 [20697030], [19734902]

rs9331949 nc transcript variant, 
utr variant 3 prime G 0.027 0.021 0.018 0.043 0.210 1.000 1.000 0.165 [23411014]

rs7982 nc transcript variant, 
synonymous codon A 0.385 0.344 0.383 0.395 0.043 0.500 0.229 0.191 [20697030], [19734902]

rs1532278 intron variant T 0.375 0.344 0.373 0.384 0.151 0.500 0.385 0.467 [21460841], [ 24806679]

Table 1.  The characteristics of included seven SNPs. Abbreviations: SNP, single nucleotidepolymorphism; 
MAF, minor allele frequency; AD, Alzheimer’s disease; MCI, mild cognitive impairment; NC, normal control.
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ATTC) were observed to be related to the levels of amyloid deposition (P <  0.05) and this supported that CLU 
modulates the alteration of the biomarkers of Aβ  markers to influence the risk of AD in vivo (Supplementary 
Table S15).

We then further validated the above results in the AD, MCI, NC sub-groups. In the NC group, rs11136000 and 
rs7982 were found to be significant. Three genotypes of rs11136000 (P =  0.025) (Fig. 2A) and rs7982 (P =  0.036) 
(Fig. 2B) were validated to decrease the tracer retention in summary SUVR at baseline. Rs7982 also decreased 
tracer retention in frontal cortex at baseline (P =  0.038) (Fig. 2C). In the MCI group, rs9331888 was the only loci 
found to be significant in two-year follow-up study. It increased the tracer retention in frontal (P =  0.001), parietal 

Figure 1. The correlation between CLU genetic variants and Aβ accumulation on AV45. (A) Heatmap 
of correlation between CLU genetic variants and Aβ  accumulation on AV45. The statistical relations (FDR-
corrected P values) between Aβ  accumulation on AV45 (rows) and CLU loci (columns) (B) rs11136000 was 
associated with the level of summary SUVR at baseline. The X-axis represents three genotypes while the Y-axis 
represents the summary AV45 retention at baseline. (C) rs1532278 was associated with the level of summary 
SUVR at baseline. The X-axis represents three genotypes while the Y-axis represents the summary AV45 
retention at baseline. (D) rs2279590 was associated with the level of summary SUVR at baseline. The X-axis 
represents three genotypes while the Y-axis represents the summary AV45 retention at baseline. (E) rs7982 was 
associated with the level of summary SUVR at baseline. The X-axis represents three genotypes while the Y-axis 
represents the summary AV45 retention at baseline. (F) rs9331888 was associated with the level of summary 
SUVR at baseline. The X-axis represents three genotypes while the Y-axis represents the summary AV45 
retention at baseline. (G) rs2279590 was associated with the level of cingulate SUVR at baseline. The X-axis 
represents three genotypes while the Y-axis represents the cingulate AV45 retention at baseline. (H) rs2279590 
was associated with the level of frontal cortex SUVR at baseline. The X-axis represents three genotypes while the 
Y-axis represents the frontal AV45 retention at baseline. (I) rs7982 was associated with the level of frontal cortex 
SUVR at baseline. The X-axis represents three genotypes while the Y-axis represents the frontal AV45 retention 
at baseline. Note: SUVR, standard uptake value ratios; AV45, amyloid tracer.
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(P =  0.002), temporal cortex (P =  0.001) and cingulate (P =  0.002), as well as summary SUVR (P =  0.005) among 
three different allelotypes (Fig. 3). In the AD group, none of the above loci were validated to be significant.

Impacts of CLU genotypes on MRI structure. We analyzed the association of these CLU loci with AD 
related brain structures (middle temporal gyrus, posterior cingulate, precuneus, parahippocampal gyrus and 
hippocampus, as well as the thickness of entorhinal cortex)40–43 in a model which rectified age, gender, educa-
tion years, ApoE ε 4 status and intracranial volume (ICV) as covariates at baseline and two-year followup study 
(Supplementary Table S4–S11). In the whole group, only single nucleotide polymorphisms (SNPs) at rs9331888 
was significantly associated with baseline volume of left hippocampus (P =  0.014). As for the thichness of right 
entorhinal cortex, SNPs at rs9331888 was significant in the cross-section analysis in baseline (P =  0.016) and 
two-year follow-up study (P =  0.011) while rs11136000 was significant in the cross-section analysis in two-year 
follow-up study (P =  0.042), but none of the difference achieved the significant level after the FDR correc-
tion. However, none of the loci was significantly associated with hippocampal subfields volume of CA1 in the 
cross-section analysis or in a multiple linear regression model.

In the AD group, SNPs at rs9331888 were significantly associated with volume of left hippocampus (P =  0.004) 
in two-year follow-up study. However, in the MCI and NC group, the SNPs at rs9331888 were not significantly 
associated with volume of left hippocampus.

Impacts of CLU genotypes on CSF markers. We firstly investigated the correlations between the con-
centrations of CSF proteins (Aβ , T-tau and P-tau) and CLU genotypes in a multiple linear regression model 
(Supplementary Table S12). We did not figure out any marked relationships between the levels of Aβ , T-tau, 
P-tau and these CLU genotypes at baseline. However, in the cross-section analysis, the levels of T-tau showed 

ROI SNP

Baseline of the whole group

Beta Sample P FDR-P

Frontal
(SUVR)

rs11136000 − 0.039 574 0.023 0.052

rs1532278 − 0.037 574 0.030 0.052

rs2279590 − 0.045 574 0.009 0.037

rs7982 − 0.044 574 0.011 0.037

Cingulate
(SUVR)

rs1532278 − 0.039 574 0.033 0.079

rs2279590 − 0.051 574 0.005 0.035

rs7982 − 0.044 574 0.018 0.063

Parietal
(SUVR) rs7982 − 0.035 574 0.047 0.137

Temporal
(SUVR) rs2279590 − 0.032 574 0.041 0.183

Summary
(SUVR)

rs11136000 − 0.032 574 0.009 0.030

rs1532278 − 0.029 574 0.023 0.039

rs2279590 − 0.031 574 0.013 0.030

rs7982 − 0.035 574 0.006 0.030

rs9331888 0.021 572 0.018 0.042

Table 2.  The significant associations of CLU loci with Aβ deposition in the whole group. ROI =  regions of 
interest; SUVR =  florbetapir standard uptake value ratios. The blue color means the P value is still significant 
after FDR correction.

Figure 2. The correlation between significant loci and AV45 SUVR at baseline in NC group. (A) rs11136000 
was associated with the level of summary SUVR at baseline. The X-axis represents three genotypes while the 
Y-axis represents the summary AV45 retention at baseline. (B) rs7982 was associated with the level of summary 
SUVR at baseline. The X-axis represents three genotypes while the Y-axis represents the summary AV45 
retention at baseline. (C) rs7982 was associated with the level of frontal cortex SUVR at baseline. The X-axis 
represents three genotypes while the Y-axis represents the frontal AV45 retention at baseline. Note: SUVR, 
standard uptake value ratios; AV45, amyloid tracer.
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remarkable difference among the three genotypes of rs11136000 (P =  0.026), but none of the difference achieved 
the significant level in the FDR test. In a word, we did not detect any association between the CLU genetic varia-
tions and CSF markers.

Impacts of CLU genotypes on glucose metabolism. In the analysis of the cerebral metabolism rate 
of glucose (CMRgl) on FDG-PET imaging, amygdala, posterior cingulate and temporal cortex were considered 
as targeted regions to detect their associations with CLU polymorphisms (Supplementary Table S13 and S14). 
We observed that the three genotypes at rs7012010 had different metabolism rate in left angular (P =  0.049) at 
baseline, but the significant difference lost after FDR correction (P =  0.34). As a result, we did not detect any asso-
ciation between the CLU genetic variations and glucose metabolism.

Discussion
Our imaging-genetics analysis in ADNI dataset suggested that CLU genotypes impacted the Aβ  deposition on 
amyloid PET imaging. Besides, rs9331888 polymorphism was still linked to the atrophy of hippocampus, espe-
cially in the AD patients. However, no evidence supported that CLU genotypes impacted CSF markers and FDG 
uptake on PET. These findings further disclosed that CLU might participate mainly in the Aβ  deposition and 
hippocampus atrophy, leading to modulate the susceptibility of AD.

Our findings suggest that CLU variants that modulate AD risk may act through their influence on Aβ  deposi-
tion and hippocampus atrophy. The possible mechanisms investigated in the current study were mostly consistent 
with the previous reports about the involvement of CLU in the pathogenesis of AD. Previous research reported 
that clusterin immunoreactivity is present in amyloid deposits, neuropil threads, dystrophic neurites in senile 
plaques, but is rarely observed in NFT-containing neurons44. Using PET imaging, it was also demonstrated that 
increased plasma clusterin concentrations were positively associated with fibrillar Aβ  burden in the entorhinal 
cortex in AD patients45. In addition, In addition, animal studies from 10 years ago linking CLU/APOJ to amyloid 
deposition have shown that clusterin/Aβ  interactions play an important role in amyloid formation and toxic-
ity46,47. In the PDAPP mice, thioflavine-S-positive amyloid that deposits in the absence of clusterin was associated 
with far less neuritic dystrophy than amyloid present in clusterin-expressing PDAPP mice. Evidence also showed 
that the in vivo effects of clusterin on amyloid formation are likely to involve multiple interactions and processes 
in ApoE-negative PDAPP mice models48. These studies have provided evidence for a protective role of clusterin 
in AD pathogenesis, such as prevention of Aβ  fibrillization, clearance of Aβ , inhibition of the complement system 
and neuronal apoptosis, and promotion of neurite outgrowth49–52. Coincidently, we also found that four loci 
(rs11136000, rs1532278, rs2279590, rs7982) were significantly associated with Aβ  deposition in cingulate, frontal 

Figure 3. The correlation between rs9331888 and AV45 SUVR in two-year follow-up study in MCI group. 
(A) rs9331888 was associated with the level of frontal cortex SUVR at two-year follow study. The X-axis 
represents three genotypes while the Y-axis represents the frontal AV45 retention. (B) rs9331888 was associated 
with the level of temporal cortex SUVR at two-year follow study. The X-axis represents three genotypes while 
the Y-axis represents the temporal AV45 retention. (C) rs9331888 was associated with the level of parietal cortex 
SUVR at two-year follow study. The X-axis represents three genotypes while the Y-axis represents the parietal 
AV45 retention. (D) rs9331888 was associated with the level of cingulate SUVR at two-year follow study. The 
X-axis represents three genotypes while the Y-axis represents the cingulate AV45 retention. (E) rs9331888 was 
associated with the level of summary SUVR at two-year follow study. The X-axis represents three genotypes 
while the Y-axis represents the summary AV45 retention. Note: SUVR, standard uptake value ratios; AV45, 
amyloid tracer.
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cortex and summary SUVR of brain. There was the least Aβ  deposition in the homozygote mutant of the four 
loci (Fig. 1). For example, the subjects who carried the CC allele of rs11136000 had the most Aβ  deposition than 
TC while those with TT allele had the least Aβ  deposition (Fig. 1B). Furthermore, rs11136000 and rs7982 were 
certificated to be still protective in the NC group. Previously available evidence strongly supported the position 
that the initiating event in AD was related to abnormal processing of Aβ , ultimately leading to formation of Aβ  
plaques in the brain. This process occurs while individuals are still cognitively normal53. Our result also strongly 
indicated that conclusion. Notably, the homozygous mutant of rs11136000 and rs7982 acted as protective role in 
Aβ  deposition in the NC group.

In our current study, rs9331888 plays an important role in Aβ  deposition as well. It is widely recognized that 
the minor allele (G) of the rs9331888 polymorphism within CLU was previously reported to be significantly 
associated with an increased risk of LOAD24. The genotypes of rs9331888 in this study were associated with tracer 
retention in summary SUVR (Fig. 1F). In the MCI group, rs9331888 was the only loci found to be significant in 
two-year follow-up study. It increased the tracer retention in frontal (P =  0.001), parietal (P =  0.002), temporal 
cortex (P =  0.001) and cingulate (P =  0.002), as well as summary SUVR (P =  0.005) among three different alleles 
(Fig. 3). This means that the homozygous mutant (GG) of rs9331888 acted as a risk factor in Aβ  deposition 
(Fig. 1F). In addition, the risk allele of the AD-associated SNP rs9331888, associated with the alternative splic-
ing of CLU gene30, increases the relative abundance of transcript NM_203339. Coincidently, the results of our 
previous study also revealed that the AD risk rs9331888 allele was associated with a decrease in clusterin plasma 
level27. All the above indicated that it may work by increasing Aβ  deposition during AD progression. As a result, 
evaluating the extent of AD pathology using rs9331888 in patients with MCI could provide clues regarding Aβ  
deposition underlying progression to AD and assist with early identification of patients with greatest risk to pro-
gress to an AD diagnosis, which will be important for clinical trials and treatment development.

Despite the risk in Aβ  deposition, rs9331888 was also significantly associated with baseline volume of left 
hippocampus in the whole group. Genotypes in rs9331888 were further validated to be associated with volume 
of left hippocampus in two-year follow-up study in the AD group instead of the MCI and NC group. Patients 
carried with GG genotype showed a smaller volume of hippocampus, as well as the decline of cognition. This is 
coincident to a study on cognition by Mengel54. However, the impacts of CLU genotypes on MRI structure we dis-
covered were not completely coincident with other studies. They found that clusterin levels have been correlated 
with symptom severity, entorhinal/hippocampal cortex atrophy, and Aβ  burden45,49,55. The following reasons may 
explain the differences. Firstly, we genotyped 7 SNPs in CLU, while only one locus (rs11136000) were tested in 
previous study. Besides, we validated their correlations in the three different diagnosis groups respectively, which 
was also different from the previous study.

CLU has been demonstrated to be present in lipoprotein particles in CSF. Level of clusterin protein in CSF 
is significantly increased in AD patients56. Reports found that CLU rs11136000 SNP modified CSF levels of the 
microtubule-associated protein Tau and decreased Aβ  (1-42) in AD patients33,34. However, other study denied this 
significance12,57. However, no evidence supported that CLU genotypes impact the Aβ  burden or tau in CSF in our 
study. More evidence may be needed to explain the interactions between CLU and Aβ  burden in CSF.

Genetically, multiple variations within CLU, such as rs2279590, rs11136000, rs9331888, rs7012010, rs9331949, 
rs7982 and rs1532278, have been identified to be associated with the risk of AD in multi-center, large scale GWAS, 
meta-analysis or replication studies. Among these loci, rs11136000 and rs9331888 were mostly investigated. 
Moreover, we performed linkage disequilibrium (LD) analysis and discovered that rs7982, rs11136000, rs1532278 
and rs9331888 were in LD. The haplotypes (GCCG, ATTC) were related to the levels of amyloid deposition. Thus 
the haplotype-based analysis validated that CLU genotypes were related to the levels of amyloid deposition. The 
results presented here are not only correlative, but also support that CLU modulates the alteration of the biomark-
ers of Aβ  markers to influence the risk of AD in vivo.

To date, continuous variable phenotypic analysis is now widely used to elucidate the specific role of genetics 
of multiple diseases. Distincted from the previous two categorical variable analysis (case vs control), the phe-
notypic analysis can not only be more sensitive to the association between genetic mutation and AD, but also 
provide more intuitively to explain the specific genetic effects on brain structure and function58. To date, numbers 
of GWAS–validated or GWAS-promising candidate loci have been certificated that they influence imaging and 
clinical features in AD40,59–61.

The advantage of our study is the method we use. Imaging genetics is an emergent transdisciplinary research 
field, in which genetic risk is assessed with imaging measures as quantitative traits (QTs) or continuous pheno-
types. QT association studies have increased statistical power and decreased sample size requirements, thus imag-
ing genetics studies have advantages over traditional case-control designs62,63. Although the differences across 
phenotypes with the same SNP might reflect power differences due to sample size differences, our findings that 
CLU modulates the alteration of the biomarkers of Aβ  markers to influence the risk of AD in vivo were also sup-
ported that by animal studies from 10 years ago linking CLU/APOJ to amyloid deposition. Hence, the important 
role of this paper is that it confirmed the results of animal studies with in vivo neuroimaging data. However, the 
neuroimaging data were available only in a subset of participants in some QT analyses, e.g., half of participants 
with MRI information, 70% with FDG-PET, and 55% with AV45. Therefore, the QT analysis had a reduced sam-
ple size in some cases. Besides, the ADNI data was restricted to Caucasians to avoid genetics stratification across 
ethnicities. The 7 loci in CLU, however, have different frequencies in different races; therefore, our results cannot 
represent the other ethnicities, warranting the replications in other races.

In summary, our results showed that four loci (rs11136000, rs1532278, rs2279590, rs7982) showed significant 
associations with the Aβ  deposition at the baseline level while genotypes of rs9331888 (P =  0.042) increased Aβ  
deposition. Besides, rs9331888 was significantly associated with baseline volume of left hippocampus (P =  0.014). 
We then further validated the association with Aβ  deposition in the AD, mild cognitive impairment (MCI), nor-
mal control (NC) sub-groups. The results in sub-groups confirmed the association between CLU genotypes and 
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Aβ  deposition further. Moreover, our findings are also supported by animal studies from 10 years ago linking 
CLU/APOJ to amyloid deposition. These findings further supported the hypothesis that CLU genetic variations 
modulate the alteration of the biomarkers of Aβ  markers to influence the risk of AD. These findings raise the 
possibility that the biological effects of CLU may be relatively confined to neuroimaging trait and hence may offer 
clues to the mechanisms through which particular genetic variants might influence AD risk.

Methods
ADNI dataset. The data in this study were obtained from Alzheimer’s Disease Neuroimaging Initiative 
(ADNI)64. ADNI is a large, multicenter, longitudinal neuroimaging study, launched in 2003 by the National 
Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, the Food and Drug 
Administration, private pharmaceutical companies, and nonprofit organizations65. The initial goal of ADNI is to 
recruit 800 subjects. However, it has been followed by ADNI-GO and ADNI-2. Thus these three protocols have 
covered more than 1500 adults who are 55 to 90 years old to participate in the research, including cognitively 
normal (CN) older individuals, mild cognitive impairment (MCI), and early dementia patients with due to AD66. 
The study was approved by the institutional review boards of all participating centers (Ocean University of China, 
Qingdao Municipal Hospital, Nanjing First Hospital, Memory and Aging Center in University of California, and 
ADNI) and written informed consent was obtained from all participants or authorized representatives. In addi-
tion, the methods were carried out in accordance with the approved guidelines.

Participants. Participants were screened and enrolled according to criteria demonstrated in the ADNI study 
protocol (http://www.adni-info.org/scientists/adnistudyprocedures.aspx). We restricted the participants to whose 
genotype data of CLU SNPs were available and comprised 812 individuals. Baseline and longitudinal data includ-
ing structural MRI and PET results were collected and all participants underwent a battery of clinical tests includ-
ing Clinical Dementia Rating scale sum of boxes (CDRSB), Alzheimer’s disease Assessment Scale (ADAS-cog), 
Mini-Mental State Exam (MMSE), Rey Auditory Verbal Learning Test (RAVLT) and Functional Activities 
Questionnaire (FAQ) at baseline. According to the National Institute of Neurological and Communication 
Disorders/Alzheimer’s Disease and Related Disorders Association criteria for probable AD (NINCDS-ADRDA: 
probable AD), participants of AD were included if with a MMSE score between 20 and 26, a global Clinical 
Dementia Rating (CDR) of 0.5 or 1.0 and a CDRSB of 1.0 to 9.0. Amnestic MCI subjects achieved a MMSE 
score of 24 to 30 as well as a CDR score of 0.5 while the cognitively normal control individuals with a CDR 
score of 0. Furthermore, in this study, subjects with any serious neurological disease except for possible AD, 
any history of brain lesions or trauma, or psychoactive medication use (including antidepressants, neuroleptics, 
chronic anxiolytics, or sedative hypnotics) were excluded. In order to avoid population stratification effects which 
can lead to spurious genetic associations, we performed the principal component analysis (PCA). We assigned 
genotype-determined ancestry by comparing ADNI patients and populations form HapMap Phase 3 data and 
only individuals clustering with European HapMap samples were retained in our study.

SNP selection and Genotyping. Seven AD associated SNPs were selected for analysis.They have been 
validated to associate with AD in ethnically distinct populations7–11,21,28,67: rs2279590, rs11136000, rs9331888, 
rs7012010, rs9331949, rs7982, rs1532278. CLU genotypes were extracted from the ADNI GWAS PLINK format 
data68. We performed the quality control (QC) procedures using PLINK software. The inclusion criteria were as 
follows: minimum call rates > 90%, minimum minor allele frequencies (MAF) >  0.01, Hardy-Weinberg equilib-
rium test P >  0.001.

PET measure-Aβ deposition. PET imaging data with amyloid tracer, florbetapir (AV-45), were obtained 
from UC Berkeley-AV45 analysis dataset on website (http://adni.loni.usc.edu/data-samples/access-data/). This 
institute used a native-space MRI scan for each subject which is segmented with Freesurfer (version 4.5.0) to 
define cortical grey matter regions of interest (ROI) (frontal, anterior/posterior cingulate, lateral parietal, lateral 
temporal) that make up a summary cortical ROI69,70. Notebly, the whole cerebellum was defined as reference 
region. Each florbetapir scan was applied to the corresponding MRI and mean florbetapir uptake within the cor-
tical and reference region was calculated. Finally, SUVRs were created by averaging across the 4 cortical regions 
and dividing the cortical summary ROI by the whole cerebellum.

CSF Protein. CSF samples were collected and transported to the ADNI Biomarker Core laboratory at the 
University of Pennsylvania Medical Center in dry ice. Preparation of aliquots (0.5 ml) from the collected sam-
ples was conducted after thawing (1 h) at room temperature and gentle mixing. The aliquots were stored in bar 
code–labeled polypropylene vials at − 80° C environment. The CSF proteins, including Aβ 1-42, Total-tau and 
Phosphorylated tau181p, were calculated using the multiplex xMAP Luminex platform (Luminex Corp, Austin, 
TX) with Innogenetics (INNO-BIA AlzBio3; Ghent, Belgium; for research use-only reagents) immunoassay kit–
based reagents. Additional analysis details and quality control procedures are showed at site (http://adni.loni.
ucla.edu).The measurements of CSF biomarker for this article were cross-sectional from the baseline evaluation. 
Finally, a total of 501 individuals with genetic and other information were included in CSF analysis from the 
ADNI sites.

MRI structure. Our study used UCSF FreeSurfer datasets to conduct association test of CLU genotypes with 
brain structure. The cerebral image segmentation and analysis were performed with the FreeSurfer version 5.1 
(http://surfer.nmr.mgh.harvard.edu/) based on the 2010 Desikan-Killany atlas71. We obtained data from motion 
correction and averaging of multiple volumetric T1 weighted images (when more than one is available), removal 
of non-brain tissue using a hybrid watershed/surface deformation procedure, automated Talairach transfor-
mation, segmentation of the subcortical white matter and deep gray matter volumetric structures (including 

http://www.adni-info.org/scientists/adnistudyprocedures.aspx
http://adni.loni.usc.edu/data-samples/access-data/
http://adni.loni.ucla.edu
http://adni.loni.ucla.edu
http://surfer.nmr.mgh.harvard.edu/
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hippocampus, amygdala, caudate, putamen, ventricles)72, intensity normalization, tessellation of the gray matter 
white matter boundary, automated topology correction, and surface deformation following intensity gradients to 
optimally place the gray/white as well as gray/cerebrospinal fluid borders at the location where the greatest shift 
in intensity defines the transition to the other tissue class. The technical details of these procedures are described 
in prior publications73.

PET measure-Glucose metabolism. FDG analysis data were from UC Berkeley and Lawrence Berkeley 
National Laboratory on the website (http://adni.loni.usc.edu/data-samples/access-data/)74. In this laboratory, five 
regions (left and right angular gyrus, bilateral posterior cingulate, left and right temporal gyrus) were treated 
as metaROIs (regions of interest) to analysis. Firstly, we downloaded the PET data from LONI (http://loni.usc.
edu/). Then these images were spatially normalized in SPM to the MNI PET template. The mean counts from the 
metaROIs for each subject’s FDG scans at each time point were extracted and the intensity values were computed 
with SPM subroutines. Finally, the mean of the top 50% of voxels within a hand-drawn pons/cerebellar vermis 
region which was hand-drawn on a T1 template in MNI space was extracted. In addition, each metaROI mean 
was normalized by dividing it by pons/vermis reference region mean75.

Statistical Analysis. Differences in continuous variables were examined using one-way analysis of variance 
(ANOVA), and categorical data were tested using χ 2 test. ADNI sample were stratified into three groups (CN, 
MCI and AD) to detect the effects of CLU genetic variations on neuroimaging phenotypes in the three clinical 
stages respectively. Moreover, we used a multiple linear regression model which considered age, gender, educa-
tion, and ApoE ε 4 status as covariates to estimate coefficients for testing possible correlation between various 
phenotypes and CLU genotypes. All statistical analyses were performed by R 3.12 and PLINK 8 (http://pngu.mgh.
harvard.edu/wpurcell/plink/). To control multiple hypothesis testing, we used the false discovery rate (FDR) for 
correction76 and statistical significance was defined for FDR-corrected P <  0.05.
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