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Abstract. Alzheimer’s disease (AD) is the most common form of dementia, with no disease-modifying treatment yet available.
Early detection of patients at risk of developing AD is of central importance. Blood-based genetic signatures can serve as early
detection and as population-based screening tools. In this study, we aimed to identify genetic markers and gene signatures associ-
ated with cerebrospinal fluid (CSF) biomarkers levels of t-tau, p-tau181, and with the two ratios t-tau/A�1-42 and p-tau181/A�1-42

in the context of progression from mild cognitive impairment (MCI) to AD, and to identify a panel of genetic markers that
can predict CSF biomarker p-tau181/A�1-42 ratio with consideration of APOE4 stratification. We analyzed genome-wide the
Alzheimer’s Disease Neuroimaging Initiative dataset with up to 48 months follow-up. In the first part of the analysis, the main
effect of single nucleotide polymorphisms (SNPs) under an additive genetic model was assessed for each of the four CSF
biomarkers. In the second part of the analysis, we performed an integrated analysis of genome-wide association study results
with pathway enrichment analysis, predictive modeling and network analysis in the subgroup of APOE4-negative subjects.
We identified a panel of five SNPs, rs6766238, rs1143960, rs1249963, rs11975968, and rs4836493, that are predictive for
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p-tau181/A�1-42 ratio (high/low) with a sensitivity of 66% and a specificity of 70% (AUC 0.74). These results suggest that a
panel of SNPs is a potential prognostic biomarker in APOE4-negative MCI patients.
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INTRODUCTION28

Alzheimer’s disease (AD) is the most common form29

of dementia, with no disease-modifying treatment yet30

available. It has been estimated that 35.6 million peo-31

ple lived with dementia worldwide in 2010 and that AD32

accounts for about 60–80% of these cases [1]. Patients33

with amnestic mild cognitive impairment (aMCI) have34

mild but measurable changes in cognitive abilities,35

especially executive memory, which is considered a36

prodromal stage of AD [2] when supported by the37

presence of abnormal biomarkers. The rate of progres-38

sion from aMCI to AD is up to 10% per year [3]. In39

an aging society, early detection as well as early ther-40

apy is widely considered to be an important goal for41

researchers. Therefore, aMCI is an important clinical42

group in which to study longitudinal changes associ-43

ated with the development of AD.44

The emerging criteria for diagnosis of AD require45

the presence of an appropriate clinical AD pheno-46

type together with one or more pathophysiological47

biomarker(s) consistent with the presence of AD48

pathology [4–6]. Biomarkers that can be utilized as49

surrogate markers of underlying pathological change50

have become of central importance for detection of51

early and preclinical AD. Efforts have been made52

by researchers worldwide to identify and validate53

different biomarkers for the early diagnosis and/or pre-54

diction of progression from MCI to AD, including55

positron emission tomography (PET) imaging lig-56

ands, archetypically Pittsburgh compound B (PiB),57

which bind to amyloid-� (A�), PET imaging with58

18F-FDG to measure local glucose metabolism [7–10],59

structural magnetic resonance imaging (MRI) and60

cerebrospinal fluid (CSF) biochemical biomarkers,61

especially A�1-42, total tau (t-tau), and tau phospho-62

rylated at threonine 181 (p-tau181) either alone, or63

in combination with imaging and CSF biomarkers64

[11–14]. It has been reported that the combination65

of increased CSF concentrations of t-tau or p-tau18166

and decreased concentration of A�1-42 improves sen-67

sitivity and specificity in the diagnosis of AD, and68

that these markers are predictive of future conver-69

sion from MCI to AD [15–18]. However, both PET70

imaging and CSF biomarkers have only had limited use 71

in population-based screening, because they are inva- 72

sive and relatively expensive. Therefore, blood-based 73

biomarkers are needed to develop more affordable 74

and more widely accessible diagnostic and prognostic 75

tests. 76

Genetic markers may facilitate improved methods 77

for early detection and for patient segmentation, as well 78

as illuminating potential therapeutic avenues. Muta- 79

tions have been identified in genes that encode the 80

amyloid precursor protein (APP), presenilin-1 (PS1), 81

and presenilin-2 (PS2) in familial AD [19]. In sporadic 82

late-onset AD (LOAD), presence of alleles encoding 83

the apolipoprotein E4 isoform (APOE4) is a strong 84

risk factor associated with AD [20, 21]. Recently, 85

genome-wide association studies (GWAS) have iden- 86

tified common variants in genes PLD3, CD2AP, CD33, 87

MS4A/MS4A6E, and EPHA1 as novel candidates asso- 88

ciated with LOAD diagnosis [22, 23] and other GWASs 89

have identified variants in PPP3R1 and MAPT as asso- 90

ciated with progression of AD [24]. However, genetic 91

variants discovered by single-locus based GWAS typi- 92

cally identified variants with small effects sizes in their 93

association with the phenotype, here AD or AD pro- 94

gression, and therefore the individual SNPs do not 95

by themselves constitute potent biomarkers for dis- 96

ease diagnosis and monitoring of AD progression. 97

Multivariate panels of genetic variants may, however, 98

provide more powerful means for diagnostic and prog- 99

nostic applications. To the best of our knowledge, 100

no studies to date have reported multivariate pan- 101

els of SNPs for prediction of progression from MCI 102

to AD. Moreover, there is relatively little knowledge 103

about diagnostic accuracy and marker selection in 104

APOE4-negative patients specifically. A recent study 105

reported that use of CSF biomarkers as a predictor 106

of conversion from MCI to AD performed better in 107

APOE4-negative subjects than APOE4-positive sub- 108

jects [25]. To address these questions, we conducted 109

an integrated analytic approach to search for predic- 110

tive genetic markers as surrogate markers of CSF 111

biomarkers aimed at improving the possibility to pre- 112

dict progression from MCI to AD alongside APOE4 113

status. 114
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In our present study, our strategy was to identify115

significant pathway-related SNPs derived from GWAS116

findings, and to construct a multivariate predictive117

model with selected pathway-related SNPs. We ini-118

tially applied a GWAS approach to identify common119

genetic polymorphisms with the strongest associa-120

tion with each one of four quantitative traits, t-tau,121

p-tau181 levels, and the two ratios t-tau/A�1-42 and122

p-tau181/A�1-42, representing progression/conversion123

from MCI to AD. Due to limited statistical power as124

well as limitation of a single-locus analysis approach125

which may lead to false negatives in respect to SNPs126

contributing to joint genetic effects, we performed127

pathway enrichment analysis to select significant128

pathway-related genes/SNPs. Finally, we applied Ran-129

dom Forest (RF) [26], a machine learning method, to130

determine a candidate panel of five SNPs with the abil-131

ity to predict p-tau181/A�1-42 ratio level (high/low) in132

APOE4-negative subjects.133

MATERIAL AND METHODS134

ADNI135

Data used in the preparation of this article were136

obtained from the Alzheimer’s Disease Neuroimaging137

Initiative (ADNI) database (http://adni.loni.usc.edu).138

ADNI study was launched in 2004 by the National139

Institute on Aging (NIA), the National Institute of140

Biomedical Imaging and Bioengineering (NIBIB), the141

Food and Drug Administration (FDA), private phar-142

maceutical companies and non-profit organizations,143

as a $60 million, 5-year public-private partnership.144

The primary goal of ADNI has been to test whether145

serial MRI, PET, other biological markers, and clinical146

and neuropsychological assessment can be combined147

to measure the progression of MCI and early AD.148

Determination of sensitivity and specificity of mark-149

ers of very early AD progression is intended to aid150

researchers and clinicians to develop new treatments151

and monitor their effectiveness, as well as lessen the152

time and cost of clinical trials. The initial goal of ADNI153

(ADNI1) was to recruit 800 subjects from over 50 sites154

across the U.S. and Canada.155

Samples and genotyping156

Genotype data of the subjects in ADNI cohort,157

who meet entry criteria for the clinical diag-158

nosis of normal cognition, amnestic MCI or159

probable AD were downloaded from the LONI160

website (http://adni.loni.usc.edu/data-samples/access-161

data/). Population stratification was observed on162

Fig. 1. Multidimensional scaling plot subjects in ADNI. Each dot
represents a subject and the distance between dots represents overall
genetic similarity calculated using whole genome SNP data. Major-
ity of subjects are self-declared Caucasian (red color), the second
large group is African American (green), and third large group is
Asian (blue).

multidimensional scaling plots of the genome- 163

wide identity-by-state (IBS) pairwise distance matrix 164

(Fig. 1), therefore, only Caucasian subjects were 165

included in further analysis. A total of 177 MCI sub- 166

jects with 48 months follow-up and available CSF 167

biomarkers data for A�1-42, p-tau181 and t-tau at base- 168

line were analyzed. Subjects were defined as MCI to 169

AD converter (MCI-con) if they converted from MCI 170

to AD at any time within 48 months and the remainder 171

defined as MCI stable (MCI-stable). 172

Since in this longitudinal study the baseline sam- 173

ples from the same subject were analyzed in different 174

visiting times with other samples from later visits, we 175

estimated and adjusted for any batch effect in the base- 176

line CSF values using a linear model in which batch 177

was included as an adjustment variable. Genotyping 178

data from the Human610-Quad BeadChip (Illumina, 179

Inc., San Diego, CA) included 620,901 SNP and copy 180

number variation (CNV) markers and was completed 181

on all ADNI subjects using the protocol as described 182

previously [27]. All samples also had an APOE geno- 183

type available in the ADNI database. 184

Quality control (QC) 185

The following QC procedures were implemented 186

prior to GWAS analysis. SNPs and individuals were 187

http://adni.loni.usc.edu
http://adni.loni.usc.edu/data-samples/access-data/
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Fig. 2. Nested cross-validation machine learning schema to evaluate model and estimate predication accuracy.

Fig. 3. Manhattan plots of GWAS of tau, tau/A�1-42, and
ptau181/A�1-42 as quantitative traits, respectively. The purple dots
represent the candidate SNPs which are reached the threshold
p < 5×10−5 and at least two SNPs are in high LD (R2 >0.8) as
well. In “t-tau” subplot and “t-tau/A�1-42” subplot, rs1445093 and
rs12327358 are represented by purple dots. In “ptau181/A�1-42” sub-
plot, rs11975968 and rs17161127 are represented by purple dots; the
top SNP rs1249963 from GWAS is represented by green dot.

filtered out if 1) minor allele frequency <5%; 2) missing188

genotype rate per SNP >95%; 3) missing genotype rate189

per individual >90%; and 4) Hardy-Weinberg Equilib-190

rium p < 10−6. In total, 514,932 SNPs were included 191

in subsequent analysis. Genotype calls and QC was 192

performed using PLINK (version 1.07) [28]. 193

A total of 514,932 SNPs and 177 subjects that passed 194

QC were included in GWAS analysis. 195

Genome-wide association analysis 196

We selected CSF biomarkers levels of t-tau, p-tau181, 197

and the two ratios t-tau/A�1-42 and p-tau181/A�1-42 198

as quantitative traits (endophenotypes) for GWAS. 199

CSF t-tau, p-tau181 concentrations, and the two ratios 200

t-tau/A�1-42 and p-tau181/A�1-42 were all observed to 201

be approximately normally distributed after log2 trans- 202

formation. 203

The main effect of SNPs was assessed on 204

log2-transformed t-tau, p-tau181, and two ratios of 205

log2-transformed t-tau/A�1-42 and p-tau181/A�1-42 as 206

quantitative traits, separately. Linear models were fit- 207

ted to identify associations dependent additively upon 208

the minor allele, with adjustment for age, gender, 209

and APOE4 status. Minor allele homozygotes were 210

coded as 2, heterozygotes coded as 1, and major allele 211

homozygotes were coded as 0. The four models based 212

on four quantitative traits were designated as p-tau181 213

model, t-tau model, p-tau181/A�1-42 model, and t-tau/ 214

A�1-42 model. For each trait, the linear regression 215

model used to test for main effect of SNP was: 216

Y = �+�1∗SNP+�2∗conversion+�3∗AGE+�4∗
217

GENDER+�5∗APOE4+� 218
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Fig. 4A. Enriched Gene Ontology terms for p-tau181. x-axis represents –log10(p-value).

The false discovery rate (FDR) for reported can-219

didate SNPs were calculated using Benjamini and220

Hochberg’s method [29].221

Pathway and network analysis222

SNPs from the four GWAS analyses p-tau181,223

p-tau181/A�1-42 ratio, t-tau, and t-tau/A�1-42 were224

assigned to genes from the NCBI build 36, using225

ProxyGeneLD which facilitates the conversion of226

genome-wide genetic marker lists to representative227

gene lists [30]. The two major features of this software228

are assigning gene-based significance by accounting229

for high linkage disequilibrium (LD) structure and cor-230

recting the p-value according to marker density due231

to the gene size. By consideration of high LD struc-232

ture (user-specified r2) the software iteratively groups233

SNPs into clusters. Cluster estimation uses LD infor-234

mation to allow for associated markers beyond gene235

windows and reduces false positive hits by accounting236

for interdependence of SNPs. Thus, the most sig- 237

nificant marker assigned to a specific gene can in 238

turn reside outside of the specified gene boundaries. 239

Two user-specified parameters in software included 240

gene-boundary windows and the LD threshold, which 241

parameters we defined as 1 kb upstream of transcrip- 242

tion initiation sites to the end of the 3 UTR of the 243

longest known splice form and r2 > 0.8 for LD thresh- 244

old, respectively. 245

In order to characterize the functional role of top 246

genes in the list, and to identify significant pathway- 247

related SNPs for further predictive models, the top 248

three percent genes in each of the four gene lists con- 249

verted from the four GWAS SNPs lists were used in 250

pathway enrichment analysis with the public database 251

Gene Ontology (GO) and the Ingenuity® pathway anal- 252

ysis. The hypergeometric test and right-tailed Fisher’s 253

Exact test to find over-represented pathways were 254

applied to the output from GO and IPA, respectively. 255

Due to the acyclic GO structure, hypergeometric tests 256
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Fig. 4B. Significant canonical pathways from Ingenuity pathway analysis for p-tau181 (A), p-tau181/A�1-42 ratio (B), t-tau (C), and t-tau/A�1-42
(D), respectively. x-axis represents –log10(p-value).

were performed with consideration for the GO struc-257

ture, such that tests were first performed for those terms258

with no child terms. Before testing the terms whose259

children had already been tested, all genes annotated260

as significant children from the parent’s gene list were261

removed. This was continued until all terms had been262

tested. The analysis was restricted to gene sets contain-263

ing 10–200 genes since small pathways can exhibit264

spurious phenotype associations due to large single265

locus effects, and large pathways are more likely to266

exhibit association by chance alone [22]. Significant267

pathways were selected with p value ≤0.01. We note268

that ProxyGeneLD as used for conversion of SNPs269

to genes treated the high LD block as a single sig-270

nal and chooses the p value of the best single marker271

(lowest p value in LD block) in that LD block for272

pre-adjustment significance level, which means that273

the same marker may be assigned to a number of274

genes in a high LD block and thus have the poten-275

tial to inflate pathway enrichment analysis. To avoid276

this, we manually checked the significant pathway 277

results from the enrichment analysis. If a significant 278

pathway included several genes in a LD block, only 279

one gene was selected at random and the enrichment 280

analysis run again to test if the pathway was still sig- 281

nificant. A protein–protein interaction network was 282

constructed based on Ingenuity Knowledge Base using 283

IPAs defined algorithm [31]. 284

Receiver operating characteristic curve analysis 285

In order to define cut-off points for subse- 286

quent binary classification from identified pathways, 287

receiver-operator characteristics (ROC) curves of the 288

MCI-con versus the MCI-stable group were plotted 289

by varying a cutoff from the baseline of t-tau and 290

p-tau181 levels and the two ratios p-tau181/A�1-42 291

and t-tau/A�1-42. AUCs under the ROC curves, sen- 292

sitivities, specificities, and optimal thresholds were 293

calculated using the pROC package (version 1.5.4) in 294
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the R software environment (version 3.0.0). The opti-295

mal threshold point was calculated using the Youden296

index method [32].297

Random Forest multivariate modeling298

Random Forest (RF) modeling was applied to299

develop a predictive model for discrimination between300

low and high levels of p-tau181/A�1-42 ratio, and to301

identify an associated biomarker panel consisting of302

a small number of predictors (SNPs). The SNPs were303

encoded as 0, 1, and 2, by minor allele count, when304

used as predictors in the RF model. To jointly evaluate305

the prediction performance and optimize RF param-306

eters, a nested (double) cross-validation strategy was307

applied (Fig. 2); the samples were randomly divided308

into one training set (71 samples) used in the innermost309

cycle for parameter optimization and one test set (10310

samples) used in the outermost cycle for prediction per-311

formance assessment. This process was repeated for 50312

random partitions of the samples into training and test313

sets. Within the inner cycle, a RF model was trained,314

consisting of 1000 trees. A variable importance (VI)315

score), Mean Decrease Accuracy, was calculated for316

all variables, and variables were ranked in descending317

order by VI score. Then, new models were constructed318

sequentially by stepwise addition of variables, one-at-319

a-time, and prediction error rates were evaluated. An320

RF model was optimized, with minimum number of321

variables (SNPs) and smallest prediction error rate,322

using the cross-validation training set in each inner323

cross-validation round. For each outer cross-validation324

round the samples in the independent test set were clas-325

sified into low and high level of p-tau181/A�1-42 ratio326

to assess prediction performance. The final prediction327

accuracy was calculated as the percentage of correctly328

classified samples across the 50 outer cross-validation329

rounds. The average of VI scores was calculated for330

each variable across the 50 iterations using training331

sets.332

For selection of the most important variables, an333

overall VI score was calculated using the full set of334

samples. The correlation between overall VI score335

and average VI score from 50 iterations was calcu-336

lated using Spearman’s rank correlation test. Analysis337

was performed with the Random Forest package (ver-338

sion 4.6–7) in the R software environment. In order to339

validate the statistical significance of predictive perfor-340

mance of AUC from ROC analysis based on the small341

set of selected predictors, RF models were fitted to the342

same number of randomly selected SNPs/predictors343

from GWAS as in the obtained model using a boot-344

strap approach. This procedure was repeated 100 times 345

in order to obtain AUC values. The empirical p value 346

of the AUC was then estimated as the proportion of 347

sampled AUC values where AUC is greater or equal to 348

the observed AUC value. 349

High performance computing 350

GWAS, cross-validation, and bootstrap validation 351

for RF models used the High Performance Computing 352

(HPC) cluster resource at AstraZeneca, Mölndal, Swe- 353

den. The HPC consists of Dell M1000E blade centers, 354

176 nodes with two six-core Xeon processors, with 355

2–8GB of memory per core. The cluster contains 2,112 356

cores in total, all connected with Infiniband QDR for 357

node inter-communication and storage access. 358

RESULTS 359

Demographic characteristics and CSF biomarkers 360

of patients with MCI in ADNI 361

From the ADNI1-cohort, 177 MCI subjects with 48 362

months follow-up time and with a useable CSF sam- 363

ple at baseline were included in the analysis, 81 of 364

these converted to AD and 96 were stable after to 48 365

months follow-up (Table 1). APOE �4 allele status 366

was significantly associated with MCI to AD con- 367

version according to the one-sided Fisher’s exact test 368

(p = 0.02313). 369

Median and mean ± SD values (log2 transformed) 370

for p-tau181, t-tau, and the two ratios of t-tau/A�1-42 371

and p-tau181/A�1-42 at baseline from the selected 372

MCI-stable and MCI-con group in ADNI are sum- 373

marized in Table 2. The CSF levels at baseline of 374

p-tau181 and the p-tau181/A�1-42 ratio were signifi- 375

cantly increased in the MCI-con group as compared 376

with MCI-stable group, respectively (for p-tau181: 377

p = 0.01; for p-tau181/A�1-42: p = 0.006), but not for 378

t-tau or t-tau/A�1-42 (p = 0.21; p = 0.097). 379

Table 1
Demographic characteristics of MCI subjects who provided a cere-
brospinal fluid sample at baseline visit and with 48 months follow-up

time in ADNI cohort

male/female median AGE at APOE �4
‘ baseline (range) carrier

MCI-stable (n = 96) 66/30 75(55–89) 45 (47%)
MCI-converter (n = 81) 52/29 75(55–89) 51 (63%)
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Table 2
Cerebrospinal fluid biomarker concentration and ratios for selected

MCI subjects at baseline

ptau181 ptau181/A�1-42 tau tau/A�1-42

MCI-stable
median 23.5 0.15 74.60 0.50
mean ± SD 30.3 ± 18.3 0.21 ± 0.17 94.79 ± 63.03 0.65 ± 0.59
MCI-con
median 36.25 0.26 94.16 0.68
mean ± SD37.02 ± 15.82 0.27 ± 0.15 106.70 ± 46.870.79 ± 0.48

GWAS of CSF biomarkers t-tau, p-tau181 and the380

two ratios of p-tau181/Aβ1-42 and t-tau/Aβ1-42381

In order to perform pathway-based analysis and382

select significant pathway-related SNPs for down-383

stream analysis, GWAS analysis was performed as384

described above. After quality control, 514,932 SNPs385

were individually fitted in linear regression mod-386

els with covariate adjustment for age, gender, and387

APOE �4 allele status to evaluate the association388

of SNPs with p-tau181 concentration, t-tau concen-389

tration, p-tau181/A�1-42 ratio, and t-tau/A�1-42 ratio,390

respectively. After calculation of genomic inflation fac-391

tors [33] (p-tau181λ = 1.007, p-tau181/A�1-42λ= 1.012,392

t-tauλ = 1.005, t-tau/A�1-42λ= 1.012), no inflation was393

observed, which indicated that population stratification394

alone was unlikely to account for the GWAS results.395

Top-ranked (p value < 10−5) candidate SNPs associ-396

ated with CSF biomarkers in the context of conversion397

from MCI to AD for the models t-tau, t-tau/A�1-42,398

p-tau181/A�1-42, and p-tau181 are listed in Table 3.399

SNPs rs1445093 and rs12327358, which are in high400

LD (r2 = 0.97), were associated with t-tau/A�1-42 ratio,401

with p values of 2.80 × 10−7 and 5.76 × 10−7, respec-402

tively (Fig. 3, purple dots in “t-tau/A�1-42” subplot).403

These two SNPs were also associated with t-tau with p404

value 3.73 × 10−7 and 6.34 × 10−7 (Fig. 3, purple dots405

in “t-tau” subplot). SNPs rs1445093 and rs12327358406

are located in an intergenic region on chromosome407

18 and are located circa 95kb and 90kb upstream,408

respectively, of the gene coding the Netrin recep-409

tor DCC (DCC). From the p-tau181/A�1-42 model,410

we observed that rs1249963 was associated with p-411

tau181/A�1-42 with p value 8.85 × 10−7 (Fig. 3, green412

dot in the “ptau181/A�1-42” subplot). rs1249963 is413

located in an intergenic region on chromosome 12 and414

7kb upstream of PPP1R1A (protein phosphatase 1,415

regulatory (inhibitor) subunit 1A). SNPs rs11975968416

(p-value: 1.53 × 10−6) and rs17161127 (p-value:417

7.71 × 10−6), are located in the first intron of phos-418

phodiesterase 1C, calmodulin-dependent (PDE1C) on419

chromosome 7, and are in high LD (r2 > 0.8) (Fig. 3, 420

purple dots in “ptau181/A�1-42” subplot). 421

Pathway analysis 422

In order to characterize the functional role of SNPs 423

and the corresponding genes and gene products asso- 424

ciated with the four traits (p-tau181, t-tau, and two 425

ratios p-tau181/A�1-42 and t-tau/A�1-42), respectively, 426

we performed a marker-to-gene conversion and ana- 427

lyzed the top 3% of genes for pathway enrichment 428

analysis for each trait. This procedure yielded four 429

lists of genes associated with each trait ranked by 430

significance. From GO analysis, we identified sev- 431

eral statistically significantly enriched (p value <0.01) 432

GO terms in the “biological processes” and “molec- 433

ular function” that were associated with the top 3% 434

of genes from the p-tau181, p-tau181/A�1-42, t-tau, and 435

t-tau/A�1-42 models, respectively (Fig. 4A). Shared 436

enriched GO terms between the p-tau181 and p- 437

tau181/A�1-42 traits were “cAMP catabolism process” 438

and “proteoglycan biosynthesis”. Shared enriched GO 439

terms between p-tau181/A�1-42 and t-tau/A�1-42 traits 440

were “cAMP-dependent protein kinase regulation” and 441

“chondroitin sulphate biosynthesis”. We also observed 442

that pathways for “positive regulation of actin filament 443

polymerization” (CDC42EP2, FMN1, RHOA, RAC1, 444

CCL21, and CCL24) and “peripheral nervous system 445

development” (FOXD2, PMP22, ISL2, TBCE, and 446

RUNX1) significantly associated with t-tau/A�1-42. 447

Significantly associated canonical pathways (p 448

value <0.01) were similarly identified using Ingenu- 449

ity Pathway Analysis (IPA) (Fig. 4B). The “Glycine 450

cleavage complex” pathway was associated to the p- 451

tau181/A�1-42, t-tau and t-tau/A�1-42 models. GCSH 452

(glycine cleavage system H protein) and AMT 453

(aminomethyltransferase) were associated with the 454

“Glycine cleavage complex” pathway (energy produc- 455

tion, lipid metabolism). The “cardiac beta-adrenergic 456

signalling” pathway was shared by p-tau181 and p- 457

tau181/A�1-42 traits. A number of genes, PDE1B, 458

PDE1C, PDE3B, PDE6D, and PDE8A, encoding 459

cyclic nucleotide phosphodiesterases (PDEs) were 460

found to be associated with this pathway. 461

Predictive models for pathway-derived 462

SNPs/genes associated with p-tau181 /Aβ1-42 in 463

APOE4-negative patients 464

In order to identify genetic markers predictive 465

of CSF biomarkers that are known in turn to pre- 466

dict MCI to AD conversion [15, 16], we performed 467
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Table 3
SNPs (p value <1 × 10−5) selected from GWAS for each trait. In each model, ∗represents SNPs in high LD (LD >0.8)

SNPs from GWAS of t-tau
SNPs name pvalue FDR chromosome Gene

rs1445093∗ 3.73E-07 0.16 18 –
rs12327358∗ 6.34E-07 0.16 18 –
rs4239351 1.29E-06 0.22 18 –
rs11078506 4.95E-06 0.58 17 –
rs11124499 6.13E-06 0.58 2 –
rs3885648 7.47E-06 0.58 3 TMEM132C
rs1466134 8.01E-06 0.58 16 GPR56
SNPs from GWAS of t-tau/ A�1-42
rs1445093∗ 2.80E-07 0.14 18
rs12327358∗ 5.76E-07 0.15 18
rs7131051 3.08E-06 0.40 11 NAV2
rs2824765 3.29E-06 0.40 21 TMPRSS15
rs4869001 3.90E-06 0.40 5 –
rs12130076 6.91E-06 0.55 1 –
rs1249963 7.81E-06 0.55 12 –
rs4577811 9.16E-06 0.55 6 PLEKHG1
SNPs from GWAS of p-tau181/A�1-42
rs1249963 8,85E-07 0.37 12 –
rs11975968∗ 1,53E-06 0.37 7 PDE1C
rs10945919 2,13E-06 0.37 6 –
rs2157673 4,32E-06 0.51 9
rs4895598 7,31E-06 0.51 6 –
rs17161127∗ 7,71E-06 0.51 7 PDE1C
rs1716355 7,90E-06 0.51 12 GLYCAM1
rs1143960 8,47E-06 0.51 12 PPP1R1A
rs2107284 8,91E-06 0.51 7 –
SNPs from GWAS of p-tau181.

rs11975968 2,99E-06 0.55 7 PDE1C
rs12809589 4,45E-06 0.55 12 TMEM132C
rs11795346 4,75E-06 0.55 9 ZNF169
rs10945919 6,92E-06 0.55 6 –
rs11059821 7,87E-06 0.55 12 TMEM132C
rs11795331 8,13E-06 0.55 9 ZNF169

ROC analysis for CSF biomarkers with stratification468

by APOE �4 allele status. Results showed that all469

four CSF biomarker classifiers performed best in the470

APOE4-negative subgroup (Supplementary Figure 1471

and Supplementary Table 1). The optimized cut-offs472

for p-tau181, ptau181/A�1-42, t-tau, and t-tau/A�1-42 to473

predict MCI to AD conversion for APOE4-negative474

subject were 20 pg/ml, 70 pg/ml, 0.13 and 0.25,475

respectively. The p-tau181/A�1-42 ratio was selected476

as response variable (binned response variable for two477

categories of high/low) in further predictive models478

considering that of both sensitivity and specificity were479

greater than 60%, thus higher in comparison with other480

CSF biomarkers (Supplementary Table 2).481

From GO and IPA enrichment analysis, 51 non-482

redundant genes were identified as related to 49 SNPs483

(Supplementary Table 3) and associated with GO terms484

or IPA canonical pathways in turn significantly associ-485

ated to the ptau/A�1-42 ratio trait, as described above.486

Having identified pathway-associated genes/SNPs in487

the GWAS analysis, and having identified optimal488

cutoff points for binary classifiers (low/high level of 489

ptau181/A�1-42 ratio), we performed predictive mod- 490

eling in the APOE4-negative group patients using 491

these 49 SNPs as predictors and low/high level of 492

ptau181/A�1-42 ratio with respect to the optimized cut- 493

off as the response variable. 494

An RF model was constructed for prediction of high 495

or low ratio of p-tau181/A�1-42 in the APOE4-negative 496

group. Cross-validation was applied to evaluate predic- 497

tion performance of the RF model, and the average 498

sensitivity was estimated to 66% and specificity to 499

70%. The AUC value was 0.74 from ROC anal- 500

ysis (p value = 0.01) (Fig. 5). The correlation of 501

variable rankings according to VI score using all 502

samples and average VI score from 50 iteration of 503

cross-validation was highly significant (Spearman’s 504

rank correlation test, p-value <2.2e−16). Five SNPs 505

rs6766238, rs1143960, rs1249963, rs11975968, and 506

rs4836493 were selected as important variables/SNPs, 507

these SNPs were ranked as top five in both in the rank- 508

ing list based on overall VI score using all samples and 509
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Fig. 5. Receiver operating characteristic analysis for prediction the
baseline level of p-tau181/A�1-42 ratio (high/low) using SNP data
based on RF model in APOE4-negative subjects. The straight diag-
onal line illustrates prediction by pure chance (AUC 0.5), and the
curved line describes the predictions using the RF models when
varying the cut-off values (AUC 0.74, p value = 0.01).

in the list based on the average VI score from cross-510

validation. The corresponding candidate genes of these511

SNPs are listed in Table 4 together with the observed512

protein expression in human brain from the Human513

Protein Atlas (HPA) [34]. We note that SNPs assigned514

to a specific gene can reside outside of specified gene515

boundaries due to consideration of LD structure as516

discussed above, and that LD blocks may contain517

more than one gene. Distribution of p-tau181/A�1-42518

ratio by genotype for the five SNPs is shown in519

Fig. 6.520

In order to characterize the functional role of the521

identified genes, potential interconnections among the522

seven candidate protein products was explored and523

a functional network was built upon the Ingenuity524

pathway knowledge base (Fig. 7). From the protein-525

protein interaction network, we could observe that526

several candidate gene products indirectly connected527

with Ca2+, which might indicate that the progression528

of AD pathology is correlated with changes of intracel-529

lular Ca2+ concentration. Most of these genes encode530

proteins that demonstrate moderate to strong protein531

expression in cerebral cortex, lateral ventricle, hip-532

pocampus, or cerebellum, suggesting that these genes533

might indeed play an important role in CNS function534

and in AD pathology.535

Table 4
RNA/protein expression level in CNS from Human Protein Atlas

database (HPA) for identified candidate genes

Representative SNP Gene CNS(brain) from HPA
rs1143960 PDE1B Strong in cerebral cortex,

lateral ventricle, and
cerebellum

rs11975968 PDE1C Strong in cerebral cortex
rs1249963 PPP1R1A Strong in cerebral cortex,

hippocampus, lateral
ventricle, and cerebellum

rs6766238 AMT Strong in cerebral cortex,
cerebellum and moderate

in hippocampus
rs6766238 RHOA Moderate in cerebral cortex,

hippocampus and
cerebellum

rs6766238 DAG1 Moderate expression in
cerebral cortex

rs4836493 CHSY3 Moderate in cerebral cortex

DISCUSSION 536

In this study, we developed and applied an inte- 537

grated analysis approach that combined GWAS, 538

pathway enrichment analysis, and predictive model- 539

ing to identify genetic factors predictive of baseline 540

CSF biomarkers, which may thus ultimately be pre- 541

dictive of AD progression from MCI to AD. For 542

single SNP analysis, we applied a conventional GWAS 543

approach to identify top-ranked SNPs associated with 544

CSF biomarkers t-tau, p-tau181, t-tau/A�1-42, and 545

p-tau181/A�1-42. In addition, we also performed path- 546

way enrichment analysis in order to get biological 547

insight and take into account potential joint genetic 548

effects. Through these analyses, we could prioritize 549

a limited number of candidate SNPs for building 550

the predictive models. We have been able to iden- 551

tify a panel of five SNPs, rs6766238, rs11975968, 552

rs1143960, rs1249963, and rs4836493, that are pre- 553

dictively informative for baseline p-tau181/A�1-42 ratio 554

(high/low, cutoff 0.13) with 66% sensitivity and 70% 555

specificity in APOE4-negative subjects. It is notable 556

that the optimal cutoff used for the predictive model 557

(0.13) is close to the median ratio for p-tau181/A�1-42 558

from the MCI APOE4-negative carrier group (0.12), 559

suggesting that the genetic test could have a signifi- 560

cant clinical impact after further validation. rs6766238 561

is representative for an LD block containing protein 562

coding genes for RHOA, AMT, and DAG1. It has 563

been shown that RHOA protein abundance is decreased 564

in the AD brain hippocampus, and RHOA colocal- 565

ized with hyperphosphorylated tau in Pick’s disease, 566

a neurodegenerative disorder characterized by hyper- 567

phosphorylated tau accumulation [35]. It has been 568
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Fig. 6. Boxplots of ratio of ptau/A�1-42 (log2 transformed) grouped by genotype for five candidate SNPs in APOE4-negative subjects. Each
boxplot is in the order homozygous major allele, heterozygous, homozygous minor allele at each SNP.

shown that DAG1 encoding protein alpha-dystroglycan569

exhibits higher levels in AD CSF as compared with570

normal subjects [36]. rs1143960 is representative for571

PDE1B (phosphodiesterase 1B, Calcium/calmodulin-572

dependent). rs1249963 is located in intergenic region573

of genome, but it is representative for PPP1R1A due574

to LD structure. rs11975968 is located in the intronic575

portion of PDE1C (phosphodiesterase 1C, calmodulin-576

dependent). rs4836493 is located in the intron region of577

gene CHSY3 (chondroitin sulfate synthase 3). PDE1B578

and PDE1C are members of the PDE1 family. PDE1579

family is activated by the binding of calmodulin in580

the presence of Ca2+ and is capable of acting on581

both cAMP and cGMP. PDE1 has several isoforms;582

PDE1B is expressed in brain and mainly in dopamin-583

ergic regions [37]. PDE1C is highly expressed in the584

heart, but also found in the CNS [38, 39]. PPP1R1A is585

involved in long-term potentiation of synapses (LTP). 586

It has been shown that deficiency of this gene in mouse 587

causes different degrees of impairment of LTP, indicat- 588

ing that these genes play a role in synaptic plasticity 589

[40]. Bossers et al. showed that using Braak staging for 590

neurofibrillary changes as an objective indicator of pro- 591

gression of AD, PPP1R1A expression was decreased 592

in early Braak stages, followed by an increase in 593

expression in later stages [41]. In summary, the genes 594

identified in the model have face validity as potential 595

modulators of calcium regulation and hence control 596

of phosphorylation in neuronal signal transduction, 597

and thus may contribute to the modulation of AD 598

progression by interaction with pathways downstream 599

from A�. This study also suggests that pharmaco- 600

logical intervention at these targets may have future 601

utility. 602
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Fig. 7. Protein–protein interaction network from the Ingenuity pathway knowledge base. Protein products of selected candidate genes are
highlighted in yellow. A solid line indicates the known experiment-confirmed direct interaction and a dashed line indicates indirect interaction.

In pathway enrichment analysis, proteoglycan603

biosynthesis was significantly associated with the p-604

tau181 and p-tau181/A�1-42 traits. It is known that605

proteoglycans are associated with amyloid deposi-606

tion and it has been reported that heparin sulphate607

proteoglycans are involved in the pathogenesis of608

AD [42]. Furthermore, it has been shown that chon-609

droitin sulphate-containing proteoglycan is found in610

senile plaques of human AD tissue [43]. NCAN611

(neurocan), CHSY3 (chondroitin sulfate synthase 3),612

and CHST7 (carbohydrate (N-acetylglucosamine 6-O)613

sulfotransferase 7) were associated with the “proteo-614

glycan biosynthetic process” pathway. Interestingly,615

the pathway of telomere maintenance via semi-616

conservative replication was significantly associated617

with p-tau181/A�1-42. There is some evidence linking 618

shortened telomeres to AD [44, 45]. 619

In this study, we investigated CSF biomarkers as 620

predictors of conversion from MCI to AD, stratified 621

by the presence of the APOE �4 allele. We observed 622

that CSF biomarkers in APOE4–negative subjects out- 623

performed APOE4-positive subjects in discriminating 624

MCI-con and MCI-stable. Our observation is sup- 625

ported by data recently published by Apostolova et al. 626

who showed that using CSF biomarker as a classifier 627

to predict conversion from MCI to AD performed bet- 628

ter in APOE4-negative subjects than APOE4-positive 629

subjects [25]. One explanation based on our analysis is 630

that there are significant differences in baseline levels 631

of CSF biomarkers between MCI-con and MCI-stable 632
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in the APOE4-negative group, while there is no sig-633

nificant difference between MCI-con and MCI-stable634

in APOE4-positive group. We also observed that base-635

line levels of CSF t-tau, p-tau181, t-tau/A�1-42, and636

p-tau181/A�1-42 were greater in the APOE4-positive637

group as compared with the APOE4-negative group.638

High CSF t-tau or p-tau181 and low CSF A�1-42 are639

linked to the tau and A� pathologies of AD and APOE640

�4 is a strong risk factor for AD development.641

One of the main aims of this study was to identify642

candidate genetic markers to predict CSF biomarkers643

in the context of progression from MCI to AD using an644

integrated analytics approach rather than single-locus645

based GWAS approach. Our results provided AUC esti-646

mated to 0.74 (p value = 0.01), suggesting that the RF647

model based on the candidate biomarker panel pro-648

vides a means to discriminate between high and low649

ratio of p-tau181/A�1-42 in APOE4-negative subjects.650

genes implicated by the identified predictive markers651

show moderate to strong protein expression in cerebral652

cortex, lateral ventricle, hippocampus or cerebellum,653

indicating that these genes might be correlated to CNS654

function. It is clear that additional work is required655

to replicate and validate the findings. Replication in656

additional cohorts and additional analysis to determine657

likely underlying functional variants to investigate the658

clinical, histological, and functional cell biological659

consequences of those changes are all warranted as660

objectives of further studies.661

A limitation of the current study is the small sam-662

ple size of MCI subjects for GWAS analysis and663

present lack of an independent cohort for valida-664

tion. We were limited to 177 subjects in ADNI1 that665

had CSF biomarkers data and so could be included666

into this model approach at the time of our study.667

Taking into account the known heterogeneity of the668

aMCI clinical diagnosis and the small effect size669

the comment genetic variants, we will have low670

power to detect genome-wide significant associa-671

tions (p < 5∗10−7) of individual variants in the GWAS672

analysis using conventional Bonferroni multiple test673

correction. However, Bonferroni’s method is overly674

conservative because the independence assumption675

does not hold due to the LD structure among SNPs.676

Therefore, the top-ranked GWAS SNPs were primarily677

used to identify significant pathways through pathway678

analysis. The reported top-ranked SNPs in this study679

should be considered as potential candidates for repli-680

cation and validation in future studies. Future studies681

with potential for replication include ADNI-GO and682

ADNI-2, where early MCI subjects are being recruited683

and all patients in ADNI-2 undergo lumbar punctures684

for CSF data collection, which will increase sample 685

size and statistical power. Moreover, the World Wide 686

ADNI (WW-ADNI) consortium is actively developing 687

broader collaboration efforts to contribute in this com- 688

munity. Large datasets from WW-ADNI are likely to 689

be become available in the future and could provide 690

more replication samples. 691

Diagnostic criteria in the field of AD remain in 692

development, and even advanced clinical AD remains a 693

probable diagnosis that is not confirmable antemortem. 694

Emerging guidelines suggest that the addition of one 695

or two biomarkers to the clinical status would add 696

value [4], however, no genetic markers are yet val- 697

idated in this context. Moreover, current biomarker 698

methodologies are invasive and expensive (primarily 699

lumbar puncture and PET imaging). Much attention is 700

thus focused on the identification of less invasive alter- 701

natives. The identification of genetic signatures that 702

can complement or even ultimately replace biochem- 703

ical biomarkers in a diagnostic or prognostic scenario 704

is thus a potential future avenue. Despite the limita- 705

tion of sample size for this study as we discussed, 706

the final SNP model is designed to demonstrate that 707

a genetic signature can predict level of baseline bio- 708

chemical biomarkers, which in turn are predictive of 709

future conversion of MCI to AD. Hence, the marker 710

panel identified in this study may have utility in screen- 711

ing and/or stratification for future treatments. 712
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